Metamath Proof Explorer


Theorem addasspr

Description: Addition of positive reals is associative. Proposition 9-3.5(i) of Gleason p. 123. (Contributed by NM, 18-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addasspr ( ( 𝐴 +P 𝐵 ) +P 𝐶 ) = ( 𝐴 +P ( 𝐵 +P 𝐶 ) )

Proof

Step Hyp Ref Expression
1 df-plp +P = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 +Q 𝑧 ) } )
2 addclnq ( ( 𝑦Q𝑧Q ) → ( 𝑦 +Q 𝑧 ) ∈ Q )
3 dmplp dom +P = ( P × P )
4 addclpr ( ( 𝑓P𝑔P ) → ( 𝑓 +P 𝑔 ) ∈ P )
5 addassnq ( ( 𝑓 +Q 𝑔 ) +Q ) = ( 𝑓 +Q ( 𝑔 +Q ) )
6 1 2 3 4 5 genpass ( ( 𝐴 +P 𝐵 ) +P 𝐶 ) = ( 𝐴 +P ( 𝐵 +P 𝐶 ) )