Description: Addition of positive reals is associative. Proposition 9-3.5(i) of Gleason p. 123. (Contributed by NM, 18-Mar-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | addasspr | ⊢ ( ( 𝐴 +P 𝐵 ) +P 𝐶 ) = ( 𝐴 +P ( 𝐵 +P 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp | ⊢ +P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 +Q 𝑧 ) } ) | |
2 | addclnq | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 +Q 𝑧 ) ∈ Q ) | |
3 | dmplp | ⊢ dom +P = ( P × P ) | |
4 | addclpr | ⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( 𝑓 +P 𝑔 ) ∈ P ) | |
5 | addassnq | ⊢ ( ( 𝑓 +Q 𝑔 ) +Q ℎ ) = ( 𝑓 +Q ( 𝑔 +Q ℎ ) ) | |
6 | 1 2 3 4 5 | genpass | ⊢ ( ( 𝐴 +P 𝐵 ) +P 𝐶 ) = ( 𝐴 +P ( 𝐵 +P 𝐶 ) ) |