Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
⊢ R = ( ( P × P ) / ~R ) |
2 |
|
addsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R +R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( 𝑥 +P 𝑧 ) , ( 𝑦 +P 𝑤 ) 〉 ] ~R ) |
3 |
|
addsrpr |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R +R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( 𝑧 +P 𝑣 ) , ( 𝑤 +P 𝑢 ) 〉 ] ~R ) |
4 |
|
addsrpr |
⊢ ( ( ( ( 𝑥 +P 𝑧 ) ∈ P ∧ ( 𝑦 +P 𝑤 ) ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 ( 𝑥 +P 𝑧 ) , ( 𝑦 +P 𝑤 ) 〉 ] ~R +R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( ( 𝑥 +P 𝑧 ) +P 𝑣 ) , ( ( 𝑦 +P 𝑤 ) +P 𝑢 ) 〉 ] ~R ) |
5 |
|
addsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R +R [ 〈 ( 𝑧 +P 𝑣 ) , ( 𝑤 +P 𝑢 ) 〉 ] ~R ) = [ 〈 ( 𝑥 +P ( 𝑧 +P 𝑣 ) ) , ( 𝑦 +P ( 𝑤 +P 𝑢 ) ) 〉 ] ~R ) |
6 |
|
addclpr |
⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 +P 𝑧 ) ∈ P ) |
7 |
|
addclpr |
⊢ ( ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑦 +P 𝑤 ) ∈ P ) |
8 |
6 7
|
anim12i |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 +P 𝑧 ) ∈ P ∧ ( 𝑦 +P 𝑤 ) ∈ P ) ) |
9 |
8
|
an4s |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 +P 𝑧 ) ∈ P ∧ ( 𝑦 +P 𝑤 ) ∈ P ) ) |
10 |
|
addclpr |
⊢ ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑧 +P 𝑣 ) ∈ P ) |
11 |
|
addclpr |
⊢ ( ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑤 +P 𝑢 ) ∈ P ) |
12 |
10 11
|
anim12i |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) |
13 |
12
|
an4s |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) |
14 |
|
addasspr |
⊢ ( ( 𝑥 +P 𝑧 ) +P 𝑣 ) = ( 𝑥 +P ( 𝑧 +P 𝑣 ) ) |
15 |
|
addasspr |
⊢ ( ( 𝑦 +P 𝑤 ) +P 𝑢 ) = ( 𝑦 +P ( 𝑤 +P 𝑢 ) ) |
16 |
1 2 3 4 5 9 13 14 15
|
ecovass |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( ( 𝐴 +R 𝐵 ) +R 𝐶 ) = ( 𝐴 +R ( 𝐵 +R 𝐶 ) ) ) |
17 |
|
dmaddsr |
⊢ dom +R = ( R × R ) |
18 |
|
0nsr |
⊢ ¬ ∅ ∈ R |
19 |
17 18
|
ndmovass |
⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( ( 𝐴 +R 𝐵 ) +R 𝐶 ) = ( 𝐴 +R ( 𝐵 +R 𝐶 ) ) ) |
20 |
16 19
|
pm2.61i |
⊢ ( ( 𝐴 +R 𝐵 ) +R 𝐶 ) = ( 𝐴 +R ( 𝐵 +R 𝐶 ) ) |