Metamath Proof Explorer
Description: Cancelling a term on the right-hand side of a sum in an equality.
Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)
|
|
Ref |
Expression |
|
Hypotheses |
muld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
addcomd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
addcand.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
|
|
addcan2ad.4 |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) |
|
Assertion |
addcan2ad |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
muld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
addcomd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
addcand.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
addcan2ad.4 |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) |
5 |
1 2 3
|
addcan2d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
6 |
4 5
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |