Metamath Proof Explorer


Theorem addcanad

Description: Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 ( 𝜑𝐴 ∈ ℂ )
addcomd.2 ( 𝜑𝐵 ∈ ℂ )
addcand.3 ( 𝜑𝐶 ∈ ℂ )
addcanad.4 ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) )
Assertion addcanad ( 𝜑𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 muld.1 ( 𝜑𝐴 ∈ ℂ )
2 addcomd.2 ( 𝜑𝐵 ∈ ℂ )
3 addcand.3 ( 𝜑𝐶 ∈ ℂ )
4 addcanad.4 ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) )
5 1 2 3 addcand ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) )
6 4 5 mpbid ( 𝜑𝐵 = 𝐶 )