Metamath Proof Explorer
Description: Cancellation law for addition. Theorem I.1 of Apostol p. 18.
(Contributed by NM, 27-Oct-1999) (Revised by Scott Fenton, 3-Jan-2013)
|
|
Ref |
Expression |
|
Hypotheses |
mul.1 |
⊢ 𝐴 ∈ ℂ |
|
|
mul.2 |
⊢ 𝐵 ∈ ℂ |
|
|
mul.3 |
⊢ 𝐶 ∈ ℂ |
|
Assertion |
addcani |
⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mul.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
mul.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
mul.3 |
⊢ 𝐶 ∈ ℂ |
4 |
|
addcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) |