| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addccncf2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝑥 ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐴  ⊆  ℂ ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | ssidd | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝐵  ∈  ℂ )  →  ℂ  ⊆  ℂ ) | 
						
							| 5 | 2 3 4 | constcncfg | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 6 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 7 |  | cncfmptid | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  𝐴  ↦  𝑥 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝐴  ⊆  ℂ  →  ( 𝑥  ∈  𝐴  ↦  𝑥 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝑥  ∈  𝐴  ↦  𝑥 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 10 | 5 9 | addcncf | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝑥 ) )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 11 | 1 10 | eqeltrid | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐹  ∈  ( 𝐴 –cn→ ℂ ) ) |