| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reval | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  =  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ℜ ‘ 𝐴 ) )  =  ( 2  ·  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 3 |  | cjcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | addcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ∗ ‘ 𝐴 )  ∈  ℂ )  →  ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 5 | 3 4 | mpdan | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 6 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 7 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 8 |  | divcan2 | ⊢ ( ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 2  ·  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 ) )  =  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 9 | 6 7 8 | mp3an23 | ⊢ ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  ∈  ℂ  →  ( 2  ·  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 ) )  =  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 10 | 5 9 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 ) )  =  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 11 | 2 10 | eqtr2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  =  ( 2  ·  ( ℜ ‘ 𝐴 ) ) ) |