Metamath Proof Explorer


Theorem addcld

Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 ( 𝜑𝐴 ∈ ℂ )
addcld.2 ( 𝜑𝐵 ∈ ℂ )
Assertion addcld ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 addcld.1 ( 𝜑𝐴 ∈ ℂ )
2 addcld.2 ( 𝜑𝐵 ∈ ℂ )
3 addcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ )