| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addpqnq | ⊢ ( ( 𝐴  ∈  Q  ∧  𝐵  ∈  Q )  →  ( 𝐴  +Q  𝐵 )  =  ( [Q] ‘ ( 𝐴  +pQ  𝐵 ) ) ) | 
						
							| 2 |  | elpqn | ⊢ ( 𝐴  ∈  Q  →  𝐴  ∈  ( N  ×  N ) ) | 
						
							| 3 |  | elpqn | ⊢ ( 𝐵  ∈  Q  →  𝐵  ∈  ( N  ×  N ) ) | 
						
							| 4 |  | addpqf | ⊢  +pQ  : ( ( N  ×  N )  ×  ( N  ×  N ) ) ⟶ ( N  ×  N ) | 
						
							| 5 | 4 | fovcl | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N ) )  →  ( 𝐴  +pQ  𝐵 )  ∈  ( N  ×  N ) ) | 
						
							| 6 | 2 3 5 | syl2an | ⊢ ( ( 𝐴  ∈  Q  ∧  𝐵  ∈  Q )  →  ( 𝐴  +pQ  𝐵 )  ∈  ( N  ×  N ) ) | 
						
							| 7 |  | nqercl | ⊢ ( ( 𝐴  +pQ  𝐵 )  ∈  ( N  ×  N )  →  ( [Q] ‘ ( 𝐴  +pQ  𝐵 ) )  ∈  Q ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐴  ∈  Q  ∧  𝐵  ∈  Q )  →  ( [Q] ‘ ( 𝐴  +pQ  𝐵 ) )  ∈  Q ) | 
						
							| 9 | 1 8 | eqeltrd | ⊢ ( ( 𝐴  ∈  Q  ∧  𝐵  ∈  Q )  →  ( 𝐴  +Q  𝐵 )  ∈  Q ) |