Step |
Hyp |
Ref |
Expression |
1 |
|
addpqnq |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +Q 𝐵 ) = ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ) |
2 |
|
elpqn |
⊢ ( 𝐴 ∈ Q → 𝐴 ∈ ( N × N ) ) |
3 |
|
elpqn |
⊢ ( 𝐵 ∈ Q → 𝐵 ∈ ( N × N ) ) |
4 |
|
addpqf |
⊢ +pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) |
5 |
4
|
fovcl |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 +pQ 𝐵 ) ∈ ( N × N ) ) |
6 |
2 3 5
|
syl2an |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +pQ 𝐵 ) ∈ ( N × N ) ) |
7 |
|
nqercl |
⊢ ( ( 𝐴 +pQ 𝐵 ) ∈ ( N × N ) → ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ∈ Q ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ∈ Q ) |
9 |
1 8
|
eqeltrd |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +Q 𝐵 ) ∈ Q ) |