Metamath Proof Explorer


Theorem addclpi

Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)

Ref Expression
Assertion addclpi ( ( 𝐴N𝐵N ) → ( 𝐴 +N 𝐵 ) ∈ N )

Proof

Step Hyp Ref Expression
1 addpiord ( ( 𝐴N𝐵N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) )
2 pinn ( 𝐴N𝐴 ∈ ω )
3 pinn ( 𝐵N𝐵 ∈ ω )
4 nnacl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω )
5 3 4 sylan2 ( ( 𝐴 ∈ ω ∧ 𝐵N ) → ( 𝐴 +o 𝐵 ) ∈ ω )
6 elni2 ( 𝐵N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) )
7 nnaordi ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) )
8 ne0i ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ( 𝐴 +o 𝐵 ) ≠ ∅ )
9 7 8 syl6 ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o 𝐵 ) ≠ ∅ ) )
10 9 expcom ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ∅ ∈ 𝐵 → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) )
11 10 imp32 ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 +o 𝐵 ) ≠ ∅ )
12 6 11 sylan2b ( ( 𝐴 ∈ ω ∧ 𝐵N ) → ( 𝐴 +o 𝐵 ) ≠ ∅ )
13 elni ( ( 𝐴 +o 𝐵 ) ∈ N ↔ ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ ( 𝐴 +o 𝐵 ) ≠ ∅ ) )
14 5 12 13 sylanbrc ( ( 𝐴 ∈ ω ∧ 𝐵N ) → ( 𝐴 +o 𝐵 ) ∈ N )
15 2 14 sylan ( ( 𝐴N𝐵N ) → ( 𝐴 +o 𝐵 ) ∈ N )
16 1 15 eqeltrd ( ( 𝐴N𝐵N ) → ( 𝐴 +N 𝐵 ) ∈ N )