Step |
Hyp |
Ref |
Expression |
1 |
|
addpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) ) |
2 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
3 |
|
pinn |
⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) |
4 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) ∈ ω ) |
6 |
|
elni2 |
⊢ ( 𝐵 ∈ N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) |
7 |
|
nnaordi |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
8 |
|
ne0i |
⊢ ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) |
9 |
7 8
|
syl6 |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) |
10 |
9
|
expcom |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ∅ ∈ 𝐵 → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) ) |
11 |
10
|
imp32 |
⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) |
12 |
6 11
|
sylan2b |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) |
13 |
|
elni |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ N ↔ ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) |
14 |
5 12 13
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) ∈ N ) |
15 |
2 14
|
sylan |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) ∈ N ) |
16 |
1 15
|
eqeltrd |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) ∈ N ) |