Metamath Proof Explorer


Theorem addclpr

Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addclpr ( ( 𝐴P𝐵P ) → ( 𝐴 +P 𝐵 ) ∈ P )

Proof

Step Hyp Ref Expression
1 df-plp +P = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 +Q 𝑧 ) } )
2 addclnq ( ( 𝑦Q𝑧Q ) → ( 𝑦 +Q 𝑧 ) ∈ Q )
3 ltanq ( Q → ( 𝑓 <Q 𝑔 ↔ ( +Q 𝑓 ) <Q ( +Q 𝑔 ) ) )
4 addcomnq ( 𝑥 +Q 𝑦 ) = ( 𝑦 +Q 𝑥 )
5 addclprlem2 ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) )
6 1 2 3 4 5 genpcl ( ( 𝐴P𝐵P ) → ( 𝐴 +P 𝐵 ) ∈ P )