Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | addclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) ∈ P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp | ⊢ +P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 +Q 𝑧 ) } ) | |
2 | addclnq | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 +Q 𝑧 ) ∈ Q ) | |
3 | ltanq | ⊢ ( ℎ ∈ Q → ( 𝑓 <Q 𝑔 ↔ ( ℎ +Q 𝑓 ) <Q ( ℎ +Q 𝑔 ) ) ) | |
4 | addcomnq | ⊢ ( 𝑥 +Q 𝑦 ) = ( 𝑦 +Q 𝑥 ) | |
5 | addclprlem2 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) | |
6 | 1 2 3 4 5 | genpcl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) ∈ P ) |