Step |
Hyp |
Ref |
Expression |
1 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) |
2 |
|
ltrnq |
⊢ ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ ( *Q ‘ ( 𝑔 +Q ℎ ) ) <Q ( *Q ‘ 𝑥 ) ) |
3 |
|
ltmnq |
⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) <Q ( *Q ‘ 𝑥 ) ↔ ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) <Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) ) |
4 |
|
ovex |
⊢ ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ∈ V |
5 |
|
ovex |
⊢ ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ∈ V |
6 |
|
ltmnq |
⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑧 ↔ ( 𝑤 ·Q 𝑦 ) <Q ( 𝑤 ·Q 𝑧 ) ) ) |
7 |
|
vex |
⊢ 𝑔 ∈ V |
8 |
|
mulcomnq |
⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) |
9 |
4 5 6 7 8
|
caovord2 |
⊢ ( 𝑔 ∈ Q → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) <Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) ) ) |
10 |
3 9
|
sylan9bbr |
⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) <Q ( *Q ‘ 𝑥 ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) ) ) |
11 |
2 10
|
syl5bb |
⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) ) ) |
12 |
|
recidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = 1Q ) |
13 |
12
|
oveq1d |
⊢ ( 𝑥 ∈ Q → ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) = ( 1Q ·Q 𝑔 ) ) |
14 |
|
mulcomnq |
⊢ ( 1Q ·Q 𝑔 ) = ( 𝑔 ·Q 1Q ) |
15 |
|
mulidnq |
⊢ ( 𝑔 ∈ Q → ( 𝑔 ·Q 1Q ) = 𝑔 ) |
16 |
14 15
|
eqtrid |
⊢ ( 𝑔 ∈ Q → ( 1Q ·Q 𝑔 ) = 𝑔 ) |
17 |
13 16
|
sylan9eqr |
⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) = 𝑔 ) |
18 |
17
|
breq2d |
⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 ) ) |
19 |
11 18
|
bitrd |
⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 ) ) |
20 |
1 19
|
sylan |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 ) ) |
21 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |
23 |
20 22
|
sylbid |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |