| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  →  𝑔  ∈  Q ) | 
						
							| 2 |  | ltrnq | ⊢ ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  ↔  ( *Q ‘ ( 𝑔  +Q  ℎ ) )  <Q  ( *Q ‘ 𝑥 ) ) | 
						
							| 3 |  | ltmnq | ⊢ ( 𝑥  ∈  Q  →  ( ( *Q ‘ ( 𝑔  +Q  ℎ ) )  <Q  ( *Q ‘ 𝑥 )  ↔  ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  <Q  ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) ) ) ) | 
						
							| 4 |  | ovex | ⊢ ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ∈  V | 
						
							| 5 |  | ovex | ⊢ ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  ∈  V | 
						
							| 6 |  | ltmnq | ⊢ ( 𝑤  ∈  Q  →  ( 𝑦  <Q  𝑧  ↔  ( 𝑤  ·Q  𝑦 )  <Q  ( 𝑤  ·Q  𝑧 ) ) ) | 
						
							| 7 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 8 |  | mulcomnq | ⊢ ( 𝑦  ·Q  𝑧 )  =  ( 𝑧  ·Q  𝑦 ) | 
						
							| 9 | 4 5 6 7 8 | caovord2 | ⊢ ( 𝑔  ∈  Q  →  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  <Q  ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  ↔  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  ( ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  ·Q  𝑔 ) ) ) | 
						
							| 10 | 3 9 | sylan9bbr | ⊢ ( ( 𝑔  ∈  Q  ∧  𝑥  ∈  Q )  →  ( ( *Q ‘ ( 𝑔  +Q  ℎ ) )  <Q  ( *Q ‘ 𝑥 )  ↔  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  ( ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  ·Q  𝑔 ) ) ) | 
						
							| 11 | 2 10 | bitrid | ⊢ ( ( 𝑔  ∈  Q  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  ↔  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  ( ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  ·Q  𝑔 ) ) ) | 
						
							| 12 |  | recidnq | ⊢ ( 𝑥  ∈  Q  →  ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  =  1Q ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑥  ∈  Q  →  ( ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  ·Q  𝑔 )  =  ( 1Q  ·Q  𝑔 ) ) | 
						
							| 14 |  | mulcomnq | ⊢ ( 1Q  ·Q  𝑔 )  =  ( 𝑔  ·Q  1Q ) | 
						
							| 15 |  | mulidnq | ⊢ ( 𝑔  ∈  Q  →  ( 𝑔  ·Q  1Q )  =  𝑔 ) | 
						
							| 16 | 14 15 | eqtrid | ⊢ ( 𝑔  ∈  Q  →  ( 1Q  ·Q  𝑔 )  =  𝑔 ) | 
						
							| 17 | 13 16 | sylan9eqr | ⊢ ( ( 𝑔  ∈  Q  ∧  𝑥  ∈  Q )  →  ( ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  ·Q  𝑔 )  =  𝑔 ) | 
						
							| 18 | 17 | breq2d | ⊢ ( ( 𝑔  ∈  Q  ∧  𝑥  ∈  Q )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  ( ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  ·Q  𝑔 )  ↔  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  𝑔 ) ) | 
						
							| 19 | 11 18 | bitrd | ⊢ ( ( 𝑔  ∈  Q  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  ↔  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  𝑔 ) ) | 
						
							| 20 | 1 19 | sylan | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  ↔  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  𝑔 ) ) | 
						
							| 21 |  | prcdnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  𝑔  →  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  ∈  𝐴 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  𝑥  ∈  Q )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  <Q  𝑔  →  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  ∈  𝐴 ) ) | 
						
							| 23 | 20 22 | sylbid | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  →  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  ∈  𝐴 ) ) |