Step |
Hyp |
Ref |
Expression |
1 |
|
addclprlem1 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |
2 |
1
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |
3 |
|
addclprlem1 |
⊢ ( ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( ℎ +Q 𝑔 ) → ( ( 𝑥 ·Q ( *Q ‘ ( ℎ +Q 𝑔 ) ) ) ·Q ℎ ) ∈ 𝐵 ) ) |
4 |
|
addcomnq |
⊢ ( 𝑔 +Q ℎ ) = ( ℎ +Q 𝑔 ) |
5 |
4
|
breq2i |
⊢ ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ 𝑥 <Q ( ℎ +Q 𝑔 ) ) |
6 |
4
|
fveq2i |
⊢ ( *Q ‘ ( 𝑔 +Q ℎ ) ) = ( *Q ‘ ( ℎ +Q 𝑔 ) ) |
7 |
6
|
oveq2i |
⊢ ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) = ( 𝑥 ·Q ( *Q ‘ ( ℎ +Q 𝑔 ) ) ) |
8 |
7
|
oveq1i |
⊢ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) = ( ( 𝑥 ·Q ( *Q ‘ ( ℎ +Q 𝑔 ) ) ) ·Q ℎ ) |
9 |
8
|
eleq1i |
⊢ ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ↔ ( ( 𝑥 ·Q ( *Q ‘ ( ℎ +Q 𝑔 ) ) ) ·Q ℎ ) ∈ 𝐵 ) |
10 |
3 5 9
|
3imtr4g |
⊢ ( ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) ) |
11 |
10
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) ) |
12 |
2 11
|
jcad |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) ) ) |
13 |
|
simpl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ) |
14 |
|
simpl |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝐴 ∈ P ) |
15 |
|
simpl |
⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → 𝐵 ∈ P ) |
16 |
14 15
|
anim12i |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) |
17 |
|
df-plp |
⊢ +P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 +Q 𝑧 ) } ) |
18 |
|
addclnq |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 +Q 𝑧 ) ∈ Q ) |
19 |
17 18
|
genpprecl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) ∈ ( 𝐴 +P 𝐵 ) ) ) |
20 |
13 16 19
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) ∈ ( 𝐴 +P 𝐵 ) ) ) |
21 |
12 20
|
syld |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) ∈ ( 𝐴 +P 𝐵 ) ) ) |
22 |
|
distrnq |
⊢ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ( 𝑔 +Q ℎ ) ) = ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) |
23 |
|
mulassnq |
⊢ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ( 𝑔 +Q ℎ ) ) = ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) ) |
24 |
22 23
|
eqtr3i |
⊢ ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) = ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) ) |
25 |
|
mulcomnq |
⊢ ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) = ( ( 𝑔 +Q ℎ ) ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) |
26 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) |
27 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) |
28 |
26 27
|
anim12i |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) ) |
29 |
|
addclnq |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) |
30 |
|
recidnq |
⊢ ( ( 𝑔 +Q ℎ ) ∈ Q → ( ( 𝑔 +Q ℎ ) ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) = 1Q ) |
31 |
28 29 30
|
3syl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑔 +Q ℎ ) ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) = 1Q ) |
32 |
25 31
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) = 1Q ) |
33 |
32
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) ) = ( 𝑥 ·Q 1Q ) ) |
34 |
|
mulidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) |
35 |
33 34
|
sylan9eq |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) ) = 𝑥 ) |
36 |
24 35
|
eqtrid |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) = 𝑥 ) |
37 |
36
|
eleq1d |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) ∈ ( 𝐴 +P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) |
38 |
21 37
|
sylibd |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) |