Metamath Proof Explorer


Theorem addclprlem2

Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addclprlem2 ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 addclprlem1 ( ( ( 𝐴P𝑔𝐴 ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) )
2 1 adantlr ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) )
3 addclprlem1 ( ( ( 𝐵P𝐵 ) ∧ 𝑥Q ) → ( 𝑥 <Q ( +Q 𝑔 ) → ( ( 𝑥 ·Q ( *Q ‘ ( +Q 𝑔 ) ) ) ·Q ) ∈ 𝐵 ) )
4 addcomnq ( 𝑔 +Q ) = ( +Q 𝑔 )
5 4 breq2i ( 𝑥 <Q ( 𝑔 +Q ) ↔ 𝑥 <Q ( +Q 𝑔 ) )
6 4 fveq2i ( *Q ‘ ( 𝑔 +Q ) ) = ( *Q ‘ ( +Q 𝑔 ) )
7 6 oveq2i ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) = ( 𝑥 ·Q ( *Q ‘ ( +Q 𝑔 ) ) )
8 7 oveq1i ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) = ( ( 𝑥 ·Q ( *Q ‘ ( +Q 𝑔 ) ) ) ·Q )
9 8 eleq1i ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ∈ 𝐵 ↔ ( ( 𝑥 ·Q ( *Q ‘ ( +Q 𝑔 ) ) ) ·Q ) ∈ 𝐵 )
10 3 5 9 3imtr4g ( ( ( 𝐵P𝐵 ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ∈ 𝐵 ) )
11 10 adantll ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ∈ 𝐵 ) )
12 2 11 jcad ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ∈ 𝐵 ) ) )
13 simpl ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) )
14 simpl ( ( 𝐴P𝑔𝐴 ) → 𝐴P )
15 simpl ( ( 𝐵P𝐵 ) → 𝐵P )
16 14 15 anim12i ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) → ( 𝐴P𝐵P ) )
17 df-plp +P = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 +Q 𝑧 ) } )
18 addclnq ( ( 𝑦Q𝑧Q ) → ( 𝑦 +Q 𝑧 ) ∈ Q )
19 17 18 genpprecl ( ( 𝐴P𝐵P ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ∈ 𝐵 ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ) ∈ ( 𝐴 +P 𝐵 ) ) )
20 13 16 19 3syl ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ∈ 𝐵 ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ) ∈ ( 𝐴 +P 𝐵 ) ) )
21 12 20 syld ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ) ∈ ( 𝐴 +P 𝐵 ) ) )
22 distrnq ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ( 𝑔 +Q ) ) = ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) )
23 mulassnq ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ( 𝑔 +Q ) ) = ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ) ) ·Q ( 𝑔 +Q ) ) )
24 22 23 eqtr3i ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ) = ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ) ) ·Q ( 𝑔 +Q ) ) )
25 mulcomnq ( ( *Q ‘ ( 𝑔 +Q ) ) ·Q ( 𝑔 +Q ) ) = ( ( 𝑔 +Q ) ·Q ( *Q ‘ ( 𝑔 +Q ) ) )
26 elprnq ( ( 𝐴P𝑔𝐴 ) → 𝑔Q )
27 elprnq ( ( 𝐵P𝐵 ) → Q )
28 26 27 anim12i ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) → ( 𝑔QQ ) )
29 addclnq ( ( 𝑔QQ ) → ( 𝑔 +Q ) ∈ Q )
30 recidnq ( ( 𝑔 +Q ) ∈ Q → ( ( 𝑔 +Q ) ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) = 1Q )
31 28 29 30 3syl ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) → ( ( 𝑔 +Q ) ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) = 1Q )
32 25 31 eqtrid ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) → ( ( *Q ‘ ( 𝑔 +Q ) ) ·Q ( 𝑔 +Q ) ) = 1Q )
33 32 oveq2d ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) → ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ) ) ·Q ( 𝑔 +Q ) ) ) = ( 𝑥 ·Q 1Q ) )
34 mulidnq ( 𝑥Q → ( 𝑥 ·Q 1Q ) = 𝑥 )
35 33 34 sylan9eq ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ) ) ·Q ( 𝑔 +Q ) ) ) = 𝑥 )
36 24 35 eqtrid ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ) = 𝑥 )
37 36 eleq1d ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ) ) ) ·Q ) ) ∈ ( 𝐴 +P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) )
38 21 37 sylibd ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 +Q ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) )