Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) ) |
2 |
|
addclpr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐹 ∈ P ) → ( 𝐴 +P 𝐹 ) ∈ P ) |
3 |
|
addclpr |
⊢ ( ( 𝐵 ∈ P ∧ 𝐺 ∈ P ) → ( 𝐵 +P 𝐺 ) ∈ P ) |
4 |
2 3
|
anim12i |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐹 ∈ P ) ∧ ( 𝐵 ∈ P ∧ 𝐺 ∈ P ) ) → ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ) |
5 |
4
|
an4s |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ) → ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ) |
6 |
|
addclpr |
⊢ ( ( 𝐶 ∈ P ∧ 𝑅 ∈ P ) → ( 𝐶 +P 𝑅 ) ∈ P ) |
7 |
|
addclpr |
⊢ ( ( 𝐷 ∈ P ∧ 𝑆 ∈ P ) → ( 𝐷 +P 𝑆 ) ∈ P ) |
8 |
6 7
|
anim12i |
⊢ ( ( ( 𝐶 ∈ P ∧ 𝑅 ∈ P ) ∧ ( 𝐷 ∈ P ∧ 𝑆 ∈ P ) ) → ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) |
9 |
8
|
an4s |
⊢ ( ( ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) → ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) |
10 |
5 9
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ) ∧ ( ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ∧ ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) ) |
11 |
10
|
an4s |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ∧ ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) ) |
12 |
|
enrbreq |
⊢ ( ( ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ∧ ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) → ( 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ↔ ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ↔ ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) ) ) |
14 |
|
addcompr |
⊢ ( 𝐹 +P 𝐷 ) = ( 𝐷 +P 𝐹 ) |
15 |
14
|
oveq1i |
⊢ ( ( 𝐹 +P 𝐷 ) +P 𝑆 ) = ( ( 𝐷 +P 𝐹 ) +P 𝑆 ) |
16 |
|
addasspr |
⊢ ( ( 𝐹 +P 𝐷 ) +P 𝑆 ) = ( 𝐹 +P ( 𝐷 +P 𝑆 ) ) |
17 |
|
addasspr |
⊢ ( ( 𝐷 +P 𝐹 ) +P 𝑆 ) = ( 𝐷 +P ( 𝐹 +P 𝑆 ) ) |
18 |
15 16 17
|
3eqtr3i |
⊢ ( 𝐹 +P ( 𝐷 +P 𝑆 ) ) = ( 𝐷 +P ( 𝐹 +P 𝑆 ) ) |
19 |
18
|
oveq2i |
⊢ ( 𝐴 +P ( 𝐹 +P ( 𝐷 +P 𝑆 ) ) ) = ( 𝐴 +P ( 𝐷 +P ( 𝐹 +P 𝑆 ) ) ) |
20 |
|
addasspr |
⊢ ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( 𝐴 +P ( 𝐹 +P ( 𝐷 +P 𝑆 ) ) ) |
21 |
|
addasspr |
⊢ ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) = ( 𝐴 +P ( 𝐷 +P ( 𝐹 +P 𝑆 ) ) ) |
22 |
19 20 21
|
3eqtr4i |
⊢ ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) |
23 |
|
addcompr |
⊢ ( 𝐺 +P 𝐶 ) = ( 𝐶 +P 𝐺 ) |
24 |
23
|
oveq1i |
⊢ ( ( 𝐺 +P 𝐶 ) +P 𝑅 ) = ( ( 𝐶 +P 𝐺 ) +P 𝑅 ) |
25 |
|
addasspr |
⊢ ( ( 𝐺 +P 𝐶 ) +P 𝑅 ) = ( 𝐺 +P ( 𝐶 +P 𝑅 ) ) |
26 |
|
addasspr |
⊢ ( ( 𝐶 +P 𝐺 ) +P 𝑅 ) = ( 𝐶 +P ( 𝐺 +P 𝑅 ) ) |
27 |
24 25 26
|
3eqtr3i |
⊢ ( 𝐺 +P ( 𝐶 +P 𝑅 ) ) = ( 𝐶 +P ( 𝐺 +P 𝑅 ) ) |
28 |
27
|
oveq2i |
⊢ ( 𝐵 +P ( 𝐺 +P ( 𝐶 +P 𝑅 ) ) ) = ( 𝐵 +P ( 𝐶 +P ( 𝐺 +P 𝑅 ) ) ) |
29 |
|
addasspr |
⊢ ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) = ( 𝐵 +P ( 𝐺 +P ( 𝐶 +P 𝑅 ) ) ) |
30 |
|
addasspr |
⊢ ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) = ( 𝐵 +P ( 𝐶 +P ( 𝐺 +P 𝑅 ) ) ) |
31 |
28 29 30
|
3eqtr4i |
⊢ ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) = ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) |
32 |
22 31
|
eqeq12i |
⊢ ( ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) ↔ ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) ) |
33 |
13 32
|
bitrdi |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ↔ ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) ) ) |
34 |
1 33
|
syl5ibr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ) ) |