Step |
Hyp |
Ref |
Expression |
1 |
|
addcnsr |
⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 𝐶 ∈ R ∧ 𝐷 ∈ R ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ + ⟨ 𝐶 , 𝐷 ⟩ ) = ⟨ ( 𝐴 +R 𝐶 ) , ( 𝐵 +R 𝐷 ) ⟩ ) |
2 |
|
opex |
⊢ ⟨ 𝐴 , 𝐵 ⟩ ∈ V |
3 |
2
|
ecid |
⊢ [ ⟨ 𝐴 , 𝐵 ⟩ ] ◡ E = ⟨ 𝐴 , 𝐵 ⟩ |
4 |
|
opex |
⊢ ⟨ 𝐶 , 𝐷 ⟩ ∈ V |
5 |
4
|
ecid |
⊢ [ ⟨ 𝐶 , 𝐷 ⟩ ] ◡ E = ⟨ 𝐶 , 𝐷 ⟩ |
6 |
3 5
|
oveq12i |
⊢ ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ◡ E + [ ⟨ 𝐶 , 𝐷 ⟩ ] ◡ E ) = ( ⟨ 𝐴 , 𝐵 ⟩ + ⟨ 𝐶 , 𝐷 ⟩ ) |
7 |
|
opex |
⊢ ⟨ ( 𝐴 +R 𝐶 ) , ( 𝐵 +R 𝐷 ) ⟩ ∈ V |
8 |
7
|
ecid |
⊢ [ ⟨ ( 𝐴 +R 𝐶 ) , ( 𝐵 +R 𝐷 ) ⟩ ] ◡ E = ⟨ ( 𝐴 +R 𝐶 ) , ( 𝐵 +R 𝐷 ) ⟩ |
9 |
1 6 8
|
3eqtr4g |
⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 𝐶 ∈ R ∧ 𝐷 ∈ R ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ◡ E + [ ⟨ 𝐶 , 𝐷 ⟩ ] ◡ E ) = [ ⟨ ( 𝐴 +R 𝐶 ) , ( 𝐵 +R 𝐷 ) ⟩ ] ◡ E ) |