Step |
Hyp |
Ref |
Expression |
1 |
|
muld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
addcomd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
4 |
3 3
|
addcld |
⊢ ( 𝜑 → ( 1 + 1 ) ∈ ℂ ) |
5 |
4 1 2
|
adddid |
⊢ ( 𝜑 → ( ( 1 + 1 ) · ( 𝐴 + 𝐵 ) ) = ( ( ( 1 + 1 ) · 𝐴 ) + ( ( 1 + 1 ) · 𝐵 ) ) ) |
6 |
1 2
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
7 |
|
1p1times |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( ( 1 + 1 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( ( 1 + 1 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
9 |
|
1p1times |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 1 ) · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → ( ( 1 + 1 ) · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
11 |
|
1p1times |
⊢ ( 𝐵 ∈ ℂ → ( ( 1 + 1 ) · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → ( ( 1 + 1 ) · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
13 |
10 12
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 1 + 1 ) · 𝐴 ) + ( ( 1 + 1 ) · 𝐵 ) ) = ( ( 𝐴 + 𝐴 ) + ( 𝐵 + 𝐵 ) ) ) |
14 |
5 8 13
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐴 ) + ( 𝐵 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
15 |
1 1
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐴 ) ∈ ℂ ) |
16 |
15 2 2
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) + 𝐵 ) = ( ( 𝐴 + 𝐴 ) + ( 𝐵 + 𝐵 ) ) ) |
17 |
6 1 2
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) + 𝐴 ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
18 |
14 16 17
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) + 𝐴 ) + 𝐵 ) ) |
19 |
15 2
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐴 ) + 𝐵 ) ∈ ℂ ) |
20 |
6 1
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐴 ) ∈ ℂ ) |
21 |
|
addcan2 |
⊢ ( ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) ∈ ℂ ∧ ( ( 𝐴 + 𝐵 ) + 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) + 𝐴 ) + 𝐵 ) ↔ ( ( 𝐴 + 𝐴 ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + 𝐴 ) ) ) |
22 |
19 20 2 21
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) + 𝐴 ) + 𝐵 ) ↔ ( ( 𝐴 + 𝐴 ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + 𝐴 ) ) ) |
23 |
18 22
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐴 ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + 𝐴 ) ) |
24 |
1 1 2
|
addassd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐴 ) + 𝐵 ) = ( 𝐴 + ( 𝐴 + 𝐵 ) ) ) |
25 |
1 2 1
|
addassd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐴 ) = ( 𝐴 + ( 𝐵 + 𝐴 ) ) ) |
26 |
23 24 25
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐴 + 𝐵 ) ) = ( 𝐴 + ( 𝐵 + 𝐴 ) ) ) |
27 |
2 1
|
addcld |
⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) ∈ ℂ ) |
28 |
|
addcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) ∈ ℂ ∧ ( 𝐵 + 𝐴 ) ∈ ℂ ) → ( ( 𝐴 + ( 𝐴 + 𝐵 ) ) = ( 𝐴 + ( 𝐵 + 𝐴 ) ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) |
29 |
1 6 27 28
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝐴 + 𝐵 ) ) = ( 𝐴 + ( 𝐵 + 𝐴 ) ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) |
30 |
26 29
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |