Metamath Proof Explorer
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013)
|
|
Ref |
Expression |
|
Hypotheses |
mul.1 |
⊢ 𝐴 ∈ ℂ |
|
|
mul.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
addcomi |
⊢ ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mul.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
mul.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
addcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) |