Metamath Proof Explorer
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mul.1 |
⊢ 𝐴 ∈ ℂ |
|
|
mul.2 |
⊢ 𝐵 ∈ ℂ |
|
|
addcomli.2 |
⊢ ( 𝐴 + 𝐵 ) = 𝐶 |
|
Assertion |
addcomli |
⊢ ( 𝐵 + 𝐴 ) = 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mul.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
mul.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
addcomli.2 |
⊢ ( 𝐴 + 𝐵 ) = 𝐶 |
4 |
2 1
|
addcomi |
⊢ ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) |
5 |
4 3
|
eqtri |
⊢ ( 𝐵 + 𝐴 ) = 𝐶 |