Step |
Hyp |
Ref |
Expression |
1 |
|
plpv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) = { 𝑥 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) } ) |
2 |
|
plpv |
⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐵 +P 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +Q 𝑧 ) } ) |
3 |
|
addcomnq |
⊢ ( 𝑦 +Q 𝑧 ) = ( 𝑧 +Q 𝑦 ) |
4 |
3
|
eqeq2i |
⊢ ( 𝑥 = ( 𝑦 +Q 𝑧 ) ↔ 𝑥 = ( 𝑧 +Q 𝑦 ) ) |
5 |
4
|
2rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +Q 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +Q 𝑦 ) ) |
6 |
|
rexcom |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +Q 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) ) |
7 |
5 6
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +Q 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) ) |
8 |
7
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +Q 𝑧 ) } = { 𝑥 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) } |
9 |
2 8
|
eqtrdi |
⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐵 +P 𝐴 ) = { 𝑥 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) } ) |
10 |
9
|
ancoms |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐵 +P 𝐴 ) = { 𝑥 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) } ) |
11 |
1 10
|
eqtr4d |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) = ( 𝐵 +P 𝐴 ) ) |
12 |
|
dmplp |
⊢ dom +P = ( P × P ) |
13 |
12
|
ndmovcom |
⊢ ( ¬ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) = ( 𝐵 +P 𝐴 ) ) |
14 |
11 13
|
pm2.61i |
⊢ ( 𝐴 +P 𝐵 ) = ( 𝐵 +P 𝐴 ) |