| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | nn0nndivcl | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( 𝐵  /  𝐶 )  ∈  ℝ ) | 
						
							| 3 | 2 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( 𝐵  /  𝐶 )  ∈  ℝ ) | 
						
							| 4 | 1 3 | jca | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( 𝐴  ∈  ℤ  ∧  ( 𝐵  /  𝐶 )  ∈  ℝ ) ) | 
						
							| 5 |  | flbi2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐵  /  𝐶 )  ∈  ℝ )  →  ( ( ⌊ ‘ ( 𝐴  +  ( 𝐵  /  𝐶 ) ) )  =  𝐴  ↔  ( 0  ≤  ( 𝐵  /  𝐶 )  ∧  ( 𝐵  /  𝐶 )  <  1 ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝐴  +  ( 𝐵  /  𝐶 ) ) )  =  𝐴  ↔  ( 0  ≤  ( 𝐵  /  𝐶 )  ∧  ( 𝐵  /  𝐶 )  <  1 ) ) ) | 
						
							| 7 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 8 |  | nn0ge0 | ⊢ ( 𝐵  ∈  ℕ0  →  0  ≤  𝐵 ) | 
						
							| 9 | 7 8 | jca | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) ) | 
						
							| 10 |  | nnre | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ∈  ℝ ) | 
						
							| 11 |  | nngt0 | ⊢ ( 𝐶  ∈  ℕ  →  0  <  𝐶 ) | 
						
							| 12 | 10 11 | jca | ⊢ ( 𝐶  ∈  ℕ  →  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 ) ) | 
						
							| 13 | 9 12 | anim12i | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  ∧  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 ) ) ) | 
						
							| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  ∧  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 ) ) ) | 
						
							| 15 |  | divge0 | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  ∧  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 ) )  →  0  ≤  ( 𝐵  /  𝐶 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  0  ≤  ( 𝐵  /  𝐶 ) ) | 
						
							| 17 | 16 | biantrurd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵  /  𝐶 )  <  1  ↔  ( 0  ≤  ( 𝐵  /  𝐶 )  ∧  ( 𝐵  /  𝐶 )  <  1 ) ) ) | 
						
							| 18 |  | nnrp | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ∈  ℝ+ ) | 
						
							| 19 | 7 18 | anim12i | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ+ ) ) | 
						
							| 20 | 19 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ+ ) ) | 
						
							| 21 |  | divlt1lt | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐵  /  𝐶 )  <  1  ↔  𝐵  <  𝐶 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵  /  𝐶 )  <  1  ↔  𝐵  <  𝐶 ) ) | 
						
							| 23 | 6 17 22 | 3bitr2rd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ )  →  ( 𝐵  <  𝐶  ↔  ( ⌊ ‘ ( 𝐴  +  ( 𝐵  /  𝐶 ) ) )  =  𝐴 ) ) |