Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
2 |
|
nn0nndivcl |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
3 |
2
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
4 |
1 3
|
jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ∈ ℤ ∧ ( 𝐵 / 𝐶 ) ∈ ℝ ) ) |
5 |
|
flbi2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 / 𝐶 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 𝐴 + ( 𝐵 / 𝐶 ) ) ) = 𝐴 ↔ ( 0 ≤ ( 𝐵 / 𝐶 ) ∧ ( 𝐵 / 𝐶 ) < 1 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝐴 + ( 𝐵 / 𝐶 ) ) ) = 𝐴 ↔ ( 0 ≤ ( 𝐵 / 𝐶 ) ∧ ( 𝐵 / 𝐶 ) < 1 ) ) ) |
7 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
8 |
|
nn0ge0 |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) |
9 |
7 8
|
jca |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
10 |
|
nnre |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℝ ) |
11 |
|
nngt0 |
⊢ ( 𝐶 ∈ ℕ → 0 < 𝐶 ) |
12 |
10 11
|
jca |
⊢ ( 𝐶 ∈ ℕ → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
13 |
9 12
|
anim12i |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ) |
15 |
|
divge0 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 0 ≤ ( 𝐵 / 𝐶 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → 0 ≤ ( 𝐵 / 𝐶 ) ) |
17 |
16
|
biantrurd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 / 𝐶 ) < 1 ↔ ( 0 ≤ ( 𝐵 / 𝐶 ) ∧ ( 𝐵 / 𝐶 ) < 1 ) ) ) |
18 |
|
nnrp |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℝ+ ) |
19 |
7 18
|
anim12i |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
20 |
19
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
21 |
|
divlt1lt |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 / 𝐶 ) < 1 ↔ 𝐵 < 𝐶 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 / 𝐶 ) < 1 ↔ 𝐵 < 𝐶 ) ) |
23 |
6 17 22
|
3bitr2rd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 < 𝐶 ↔ ( ⌊ ‘ ( 𝐴 + ( 𝐵 / 𝐶 ) ) ) = 𝐴 ) ) |