Metamath Proof Explorer


Theorem addeq0

Description: Two complex numbers add up to zero iff they are each other's opposites. (Contributed by Thierry Arnoux, 2-May-2017)

Ref Expression
Assertion addeq0 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ 𝐴 = - 𝐵 ) )

Proof

Step Hyp Ref Expression
1 0cnd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ∈ ℂ )
2 simpr ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ )
3 simpl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ )
4 1 2 3 subadd2d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 − 𝐵 ) = 𝐴 ↔ ( 𝐴 + 𝐵 ) = 0 ) )
5 df-neg - 𝐵 = ( 0 − 𝐵 )
6 5 eqeq1i ( - 𝐵 = 𝐴 ↔ ( 0 − 𝐵 ) = 𝐴 )
7 eqcom ( - 𝐵 = 𝐴𝐴 = - 𝐵 )
8 6 7 bitr3i ( ( 0 − 𝐵 ) = 𝐴𝐴 = - 𝐵 )
9 4 8 bitr3di ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ 𝐴 = - 𝐵 ) )