Description: Two complex numbers add up to zero iff they are each other's opposites. (Contributed by Thierry Arnoux, 2-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | addeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ 𝐴 = - 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ∈ ℂ ) | |
2 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
3 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
4 | 1 2 3 | subadd2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 − 𝐵 ) = 𝐴 ↔ ( 𝐴 + 𝐵 ) = 0 ) ) |
5 | df-neg | ⊢ - 𝐵 = ( 0 − 𝐵 ) | |
6 | 5 | eqeq1i | ⊢ ( - 𝐵 = 𝐴 ↔ ( 0 − 𝐵 ) = 𝐴 ) |
7 | eqcom | ⊢ ( - 𝐵 = 𝐴 ↔ 𝐴 = - 𝐵 ) | |
8 | 6 7 | bitr3i | ⊢ ( ( 0 − 𝐵 ) = 𝐴 ↔ 𝐴 = - 𝐵 ) |
9 | 4 8 | bitr3di | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ 𝐴 = - 𝐵 ) ) |