| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nqercl |
⊢ ( 𝐴 ∈ ( N × N ) → ( [Q] ‘ 𝐴 ) ∈ Q ) |
| 2 |
|
nqercl |
⊢ ( 𝐵 ∈ ( N × N ) → ( [Q] ‘ 𝐵 ) ∈ Q ) |
| 3 |
|
addpqnq |
⊢ ( ( ( [Q] ‘ 𝐴 ) ∈ Q ∧ ( [Q] ‘ 𝐵 ) ∈ Q ) → ( ( [Q] ‘ 𝐴 ) +Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) +Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ) ) |
| 5 |
|
enqer |
⊢ ~Q Er ( N × N ) |
| 6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ~Q Er ( N × N ) ) |
| 7 |
|
nqerrel |
⊢ ( 𝐴 ∈ ( N × N ) → 𝐴 ~Q ( [Q] ‘ 𝐴 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → 𝐴 ~Q ( [Q] ‘ 𝐴 ) ) |
| 9 |
|
elpqn |
⊢ ( ( [Q] ‘ 𝐴 ) ∈ Q → ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ) |
| 10 |
1 9
|
syl |
⊢ ( 𝐴 ∈ ( N × N ) → ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ) |
| 11 |
|
adderpqlem |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ~Q ( [Q] ‘ 𝐴 ) ↔ ( 𝐴 +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ 𝐵 ) ) ) |
| 12 |
11
|
3exp |
⊢ ( 𝐴 ∈ ( N × N ) → ( ( [Q] ‘ 𝐴 ) ∈ ( N × N ) → ( 𝐵 ∈ ( N × N ) → ( 𝐴 ~Q ( [Q] ‘ 𝐴 ) ↔ ( 𝐴 +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ 𝐵 ) ) ) ) ) |
| 13 |
10 12
|
mpd |
⊢ ( 𝐴 ∈ ( N × N ) → ( 𝐵 ∈ ( N × N ) → ( 𝐴 ~Q ( [Q] ‘ 𝐴 ) ↔ ( 𝐴 +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ 𝐵 ) ) ) ) |
| 14 |
13
|
imp |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ~Q ( [Q] ‘ 𝐴 ) ↔ ( 𝐴 +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ 𝐵 ) ) ) |
| 15 |
8 14
|
mpbid |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ 𝐵 ) ) |
| 16 |
|
nqerrel |
⊢ ( 𝐵 ∈ ( N × N ) → 𝐵 ~Q ( [Q] ‘ 𝐵 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → 𝐵 ~Q ( [Q] ‘ 𝐵 ) ) |
| 18 |
|
elpqn |
⊢ ( ( [Q] ‘ 𝐵 ) ∈ Q → ( [Q] ‘ 𝐵 ) ∈ ( N × N ) ) |
| 19 |
2 18
|
syl |
⊢ ( 𝐵 ∈ ( N × N ) → ( [Q] ‘ 𝐵 ) ∈ ( N × N ) ) |
| 20 |
|
adderpqlem |
⊢ ( ( 𝐵 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐵 ) ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ) → ( 𝐵 ~Q ( [Q] ‘ 𝐵 ) ↔ ( 𝐵 +pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) +pQ ( [Q] ‘ 𝐴 ) ) ) ) |
| 21 |
20
|
3exp |
⊢ ( 𝐵 ∈ ( N × N ) → ( ( [Q] ‘ 𝐵 ) ∈ ( N × N ) → ( ( [Q] ‘ 𝐴 ) ∈ ( N × N ) → ( 𝐵 ~Q ( [Q] ‘ 𝐵 ) ↔ ( 𝐵 +pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) +pQ ( [Q] ‘ 𝐴 ) ) ) ) ) ) |
| 22 |
19 21
|
mpd |
⊢ ( 𝐵 ∈ ( N × N ) → ( ( [Q] ‘ 𝐴 ) ∈ ( N × N ) → ( 𝐵 ~Q ( [Q] ‘ 𝐵 ) ↔ ( 𝐵 +pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) +pQ ( [Q] ‘ 𝐴 ) ) ) ) ) |
| 23 |
10 22
|
mpan9 |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐵 ~Q ( [Q] ‘ 𝐵 ) ↔ ( 𝐵 +pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) +pQ ( [Q] ‘ 𝐴 ) ) ) ) |
| 24 |
17 23
|
mpbid |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐵 +pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) +pQ ( [Q] ‘ 𝐴 ) ) ) |
| 25 |
|
addcompq |
⊢ ( 𝐵 +pQ ( [Q] ‘ 𝐴 ) ) = ( ( [Q] ‘ 𝐴 ) +pQ 𝐵 ) |
| 26 |
|
addcompq |
⊢ ( ( [Q] ‘ 𝐵 ) +pQ ( [Q] ‘ 𝐴 ) ) = ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) |
| 27 |
24 25 26
|
3brtr3g |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ) |
| 28 |
6 15 27
|
ertrd |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ) |
| 29 |
|
addpqf |
⊢ +pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) |
| 30 |
29
|
fovcl |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 +pQ 𝐵 ) ∈ ( N × N ) ) |
| 31 |
29
|
fovcl |
⊢ ( ( ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ∧ ( [Q] ‘ 𝐵 ) ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ∈ ( N × N ) ) |
| 32 |
10 19 31
|
syl2an |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ∈ ( N × N ) ) |
| 33 |
|
nqereq |
⊢ ( ( ( 𝐴 +pQ 𝐵 ) ∈ ( N × N ) ∧ ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ∈ ( N × N ) ) → ( ( 𝐴 +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ↔ ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ) ) ) |
| 34 |
30 32 33
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( 𝐴 +pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ↔ ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ) ) ) |
| 35 |
28 34
|
mpbid |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) +pQ ( [Q] ‘ 𝐵 ) ) ) ) |
| 36 |
4 35
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) +Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ) |
| 37 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
| 38 |
|
nqerf |
⊢ [Q] : ( N × N ) ⟶ Q |
| 39 |
38
|
fdmi |
⊢ dom [Q] = ( N × N ) |
| 40 |
39
|
eleq2i |
⊢ ( 𝐴 ∈ dom [Q] ↔ 𝐴 ∈ ( N × N ) ) |
| 41 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom [Q] → ( [Q] ‘ 𝐴 ) = ∅ ) |
| 42 |
40 41
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ ( N × N ) → ( [Q] ‘ 𝐴 ) = ∅ ) |
| 43 |
42
|
eleq1d |
⊢ ( ¬ 𝐴 ∈ ( N × N ) → ( ( [Q] ‘ 𝐴 ) ∈ Q ↔ ∅ ∈ Q ) ) |
| 44 |
37 43
|
mtbiri |
⊢ ( ¬ 𝐴 ∈ ( N × N ) → ¬ ( [Q] ‘ 𝐴 ) ∈ Q ) |
| 45 |
44
|
con4i |
⊢ ( ( [Q] ‘ 𝐴 ) ∈ Q → 𝐴 ∈ ( N × N ) ) |
| 46 |
39
|
eleq2i |
⊢ ( 𝐵 ∈ dom [Q] ↔ 𝐵 ∈ ( N × N ) ) |
| 47 |
|
ndmfv |
⊢ ( ¬ 𝐵 ∈ dom [Q] → ( [Q] ‘ 𝐵 ) = ∅ ) |
| 48 |
46 47
|
sylnbir |
⊢ ( ¬ 𝐵 ∈ ( N × N ) → ( [Q] ‘ 𝐵 ) = ∅ ) |
| 49 |
48
|
eleq1d |
⊢ ( ¬ 𝐵 ∈ ( N × N ) → ( ( [Q] ‘ 𝐵 ) ∈ Q ↔ ∅ ∈ Q ) ) |
| 50 |
37 49
|
mtbiri |
⊢ ( ¬ 𝐵 ∈ ( N × N ) → ¬ ( [Q] ‘ 𝐵 ) ∈ Q ) |
| 51 |
50
|
con4i |
⊢ ( ( [Q] ‘ 𝐵 ) ∈ Q → 𝐵 ∈ ( N × N ) ) |
| 52 |
45 51
|
anim12i |
⊢ ( ( ( [Q] ‘ 𝐴 ) ∈ Q ∧ ( [Q] ‘ 𝐵 ) ∈ Q ) → ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) ) |
| 53 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
| 54 |
53
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
| 55 |
54
|
ndmov |
⊢ ( ¬ ( ( [Q] ‘ 𝐴 ) ∈ Q ∧ ( [Q] ‘ 𝐵 ) ∈ Q ) → ( ( [Q] ‘ 𝐴 ) +Q ( [Q] ‘ 𝐵 ) ) = ∅ ) |
| 56 |
52 55
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) +Q ( [Q] ‘ 𝐵 ) ) = ∅ ) |
| 57 |
|
0nelxp |
⊢ ¬ ∅ ∈ ( N × N ) |
| 58 |
39
|
eleq2i |
⊢ ( ∅ ∈ dom [Q] ↔ ∅ ∈ ( N × N ) ) |
| 59 |
57 58
|
mtbir |
⊢ ¬ ∅ ∈ dom [Q] |
| 60 |
29
|
fdmi |
⊢ dom +pQ = ( ( N × N ) × ( N × N ) ) |
| 61 |
60
|
ndmov |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 +pQ 𝐵 ) = ∅ ) |
| 62 |
61
|
eleq1d |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( 𝐴 +pQ 𝐵 ) ∈ dom [Q] ↔ ∅ ∈ dom [Q] ) ) |
| 63 |
59 62
|
mtbiri |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ¬ ( 𝐴 +pQ 𝐵 ) ∈ dom [Q] ) |
| 64 |
|
ndmfv |
⊢ ( ¬ ( 𝐴 +pQ 𝐵 ) ∈ dom [Q] → ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) = ∅ ) |
| 65 |
63 64
|
syl |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) = ∅ ) |
| 66 |
56 65
|
eqtr4d |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) +Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ) |
| 67 |
36 66
|
pm2.61i |
⊢ ( ( [Q] ‘ 𝐴 ) +Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) |