Metamath Proof Explorer


Theorem addex

Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion addex + ∈ V

Proof

Step Hyp Ref Expression
1 ax-addf + : ( ℂ × ℂ ) ⟶ ℂ
2 cnex ℂ ∈ V
3 2 2 xpex ( ℂ × ℂ ) ∈ V
4 fex2 ( ( + : ( ℂ × ℂ ) ⟶ ℂ ∧ ( ℂ × ℂ ) ∈ V ∧ ℂ ∈ V ) → + ∈ V )
5 1 3 2 4 mp3an + ∈ V