Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 27-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | addge02 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐵 + 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addge01 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐴 + 𝐵 ) ) ) | |
2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
3 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
4 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
5 | 2 3 4 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
6 | 5 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐴 + 𝐵 ) ↔ 𝐴 ≤ ( 𝐵 + 𝐴 ) ) ) |
7 | 1 6 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐵 + 𝐴 ) ) ) |