Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | addgegt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 + 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 00id | ⊢ ( 0 + 0 ) = 0 | |
2 | 0re | ⊢ 0 ∈ ℝ | |
3 | leltadd | ⊢ ( ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 0 ≤ 𝐴 ∧ 0 < 𝐵 ) → ( 0 + 0 ) < ( 𝐴 + 𝐵 ) ) ) | |
4 | 2 2 3 | mpanl12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 0 < 𝐵 ) → ( 0 + 0 ) < ( 𝐴 + 𝐵 ) ) ) |
5 | 4 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 < 𝐵 ) ) → ( 0 + 0 ) < ( 𝐴 + 𝐵 ) ) |
6 | 1 5 | eqbrtrrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 + 𝐵 ) ) |