Metamath Proof Explorer


Theorem addgegt0d

Description: Addition of nonnegative and positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
addgegt0d.3 ( 𝜑 → 0 ≤ 𝐴 )
addgegt0d.4 ( 𝜑 → 0 < 𝐵 )
Assertion addgegt0d ( 𝜑 → 0 < ( 𝐴 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 addgegt0d.3 ( 𝜑 → 0 ≤ 𝐴 )
4 addgegt0d.4 ( 𝜑 → 0 < 𝐵 )
5 addgegt0 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 + 𝐵 ) )
6 1 2 3 4 5 syl22anc ( 𝜑 → 0 < ( 𝐴 + 𝐵 ) )