Metamath Proof Explorer
Description: Addition of 2 positive numbers is positive. (Contributed by Mario
Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
addgt0d.3 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
|
|
addgt0d.4 |
⊢ ( 𝜑 → 0 < 𝐵 ) |
|
Assertion |
addgt0d |
⊢ ( 𝜑 → 0 < ( 𝐴 + 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
addgt0d.3 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
4 |
|
addgt0d.4 |
⊢ ( 𝜑 → 0 < 𝐵 ) |
5 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
6 |
5 1 3
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
7 |
1 2 6 4
|
addgegt0d |
⊢ ( 𝜑 → 0 < ( 𝐴 + 𝐵 ) ) |