Metamath Proof Explorer


Theorem addgt0sr

Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion addgt0sr ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 +R 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ltrelsr <R ⊆ ( R × R )
2 1 brel ( 0R <R 𝐴 → ( 0RR𝐴R ) )
3 ltasr ( 𝐴R → ( 0R <R 𝐵 ↔ ( 𝐴 +R 0R ) <R ( 𝐴 +R 𝐵 ) ) )
4 0idsr ( 𝐴R → ( 𝐴 +R 0R ) = 𝐴 )
5 4 breq1d ( 𝐴R → ( ( 𝐴 +R 0R ) <R ( 𝐴 +R 𝐵 ) ↔ 𝐴 <R ( 𝐴 +R 𝐵 ) ) )
6 3 5 bitrd ( 𝐴R → ( 0R <R 𝐵𝐴 <R ( 𝐴 +R 𝐵 ) ) )
7 2 6 simpl2im ( 0R <R 𝐴 → ( 0R <R 𝐵𝐴 <R ( 𝐴 +R 𝐵 ) ) )
8 7 biimpa ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 𝐴 <R ( 𝐴 +R 𝐵 ) )
9 ltsosr <R Or R
10 9 1 sotri ( ( 0R <R 𝐴𝐴 <R ( 𝐴 +R 𝐵 ) ) → 0R <R ( 𝐴 +R 𝐵 ) )
11 8 10 syldan ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 +R 𝐵 ) )