Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelsr |
⊢ <R ⊆ ( R × R ) |
2 |
1
|
brel |
⊢ ( 0R <R 𝐴 → ( 0R ∈ R ∧ 𝐴 ∈ R ) ) |
3 |
|
ltasr |
⊢ ( 𝐴 ∈ R → ( 0R <R 𝐵 ↔ ( 𝐴 +R 0R ) <R ( 𝐴 +R 𝐵 ) ) ) |
4 |
|
0idsr |
⊢ ( 𝐴 ∈ R → ( 𝐴 +R 0R ) = 𝐴 ) |
5 |
4
|
breq1d |
⊢ ( 𝐴 ∈ R → ( ( 𝐴 +R 0R ) <R ( 𝐴 +R 𝐵 ) ↔ 𝐴 <R ( 𝐴 +R 𝐵 ) ) ) |
6 |
3 5
|
bitrd |
⊢ ( 𝐴 ∈ R → ( 0R <R 𝐵 ↔ 𝐴 <R ( 𝐴 +R 𝐵 ) ) ) |
7 |
2 6
|
simpl2im |
⊢ ( 0R <R 𝐴 → ( 0R <R 𝐵 ↔ 𝐴 <R ( 𝐴 +R 𝐵 ) ) ) |
8 |
7
|
biimpa |
⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 𝐴 <R ( 𝐴 +R 𝐵 ) ) |
9 |
|
ltsosr |
⊢ <R Or R |
10 |
9 1
|
sotri |
⊢ ( ( 0R <R 𝐴 ∧ 𝐴 <R ( 𝐴 +R 𝐵 ) ) → 0R <R ( 𝐴 +R 𝐵 ) ) |
11 |
8 10
|
syldan |
⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 +R 𝐵 ) ) |