| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltrelsr | ⊢  <R   ⊆  ( R  ×  R ) | 
						
							| 2 | 1 | brel | ⊢ ( 0R  <R  𝐴  →  ( 0R  ∈  R  ∧  𝐴  ∈  R ) ) | 
						
							| 3 |  | ltasr | ⊢ ( 𝐴  ∈  R  →  ( 0R  <R  𝐵  ↔  ( 𝐴  +R  0R )  <R  ( 𝐴  +R  𝐵 ) ) ) | 
						
							| 4 |  | 0idsr | ⊢ ( 𝐴  ∈  R  →  ( 𝐴  +R  0R )  =  𝐴 ) | 
						
							| 5 | 4 | breq1d | ⊢ ( 𝐴  ∈  R  →  ( ( 𝐴  +R  0R )  <R  ( 𝐴  +R  𝐵 )  ↔  𝐴  <R  ( 𝐴  +R  𝐵 ) ) ) | 
						
							| 6 | 3 5 | bitrd | ⊢ ( 𝐴  ∈  R  →  ( 0R  <R  𝐵  ↔  𝐴  <R  ( 𝐴  +R  𝐵 ) ) ) | 
						
							| 7 | 2 6 | simpl2im | ⊢ ( 0R  <R  𝐴  →  ( 0R  <R  𝐵  ↔  𝐴  <R  ( 𝐴  +R  𝐵 ) ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( 0R  <R  𝐴  ∧  0R  <R  𝐵 )  →  𝐴  <R  ( 𝐴  +R  𝐵 ) ) | 
						
							| 9 |  | ltsosr | ⊢  <R   Or  R | 
						
							| 10 | 9 1 | sotri | ⊢ ( ( 0R  <R  𝐴  ∧  𝐴  <R  ( 𝐴  +R  𝐵 ) )  →  0R  <R  ( 𝐴  +R  𝐵 ) ) | 
						
							| 11 | 8 10 | syldan | ⊢ ( ( 0R  <R  𝐴  ∧  0R  <R  𝐵 )  →  0R  <R  ( 𝐴  +R  𝐵 ) ) |