Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → 𝑋 ∈ ℂ ) |
2 |
|
simpr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → 𝑌 ∈ ℂ ) |
3 |
1 1 2
|
subaddd |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 − 𝑋 ) = 𝑌 ↔ ( 𝑋 + 𝑌 ) = 𝑋 ) ) |
4 |
|
eqcom |
⊢ ( ( 𝑋 − 𝑋 ) = 𝑌 ↔ 𝑌 = ( 𝑋 − 𝑋 ) ) |
5 |
|
simpr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 = ( 𝑋 − 𝑋 ) ) → 𝑌 = ( 𝑋 − 𝑋 ) ) |
6 |
|
subid |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − 𝑋 ) = 0 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 = ( 𝑋 − 𝑋 ) ) → ( 𝑋 − 𝑋 ) = 0 ) |
8 |
5 7
|
eqtrd |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 = ( 𝑋 − 𝑋 ) ) → 𝑌 = 0 ) |
9 |
8
|
ex |
⊢ ( 𝑋 ∈ ℂ → ( 𝑌 = ( 𝑋 − 𝑋 ) → 𝑌 = 0 ) ) |
10 |
4 9
|
syl5bi |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 − 𝑋 ) = 𝑌 → 𝑌 = 0 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 − 𝑋 ) = 𝑌 → 𝑌 = 0 ) ) |
12 |
3 11
|
sylbird |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 + 𝑌 ) = 𝑋 → 𝑌 = 0 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑌 = 0 → ( 𝑋 + 𝑌 ) = ( 𝑋 + 0 ) ) |
14 |
|
addid1 |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + 0 ) = 𝑋 ) |
15 |
13 14
|
sylan9eqr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 = 0 ) → ( 𝑋 + 𝑌 ) = 𝑋 ) |
16 |
15
|
ex |
⊢ ( 𝑋 ∈ ℂ → ( 𝑌 = 0 → ( 𝑋 + 𝑌 ) = 𝑋 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( 𝑌 = 0 → ( 𝑋 + 𝑌 ) = 𝑋 ) ) |
18 |
12 17
|
impbid |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 + 𝑌 ) = 𝑋 ↔ 𝑌 = 0 ) ) |