| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → 𝑋 ∈ ℂ ) |
| 2 |
|
simpr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → 𝑌 ∈ ℂ ) |
| 3 |
1 1 2
|
subaddd |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 − 𝑋 ) = 𝑌 ↔ ( 𝑋 + 𝑌 ) = 𝑋 ) ) |
| 4 |
|
eqcom |
⊢ ( ( 𝑋 − 𝑋 ) = 𝑌 ↔ 𝑌 = ( 𝑋 − 𝑋 ) ) |
| 5 |
|
simpr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 = ( 𝑋 − 𝑋 ) ) → 𝑌 = ( 𝑋 − 𝑋 ) ) |
| 6 |
|
subid |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − 𝑋 ) = 0 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 = ( 𝑋 − 𝑋 ) ) → ( 𝑋 − 𝑋 ) = 0 ) |
| 8 |
5 7
|
eqtrd |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 = ( 𝑋 − 𝑋 ) ) → 𝑌 = 0 ) |
| 9 |
8
|
ex |
⊢ ( 𝑋 ∈ ℂ → ( 𝑌 = ( 𝑋 − 𝑋 ) → 𝑌 = 0 ) ) |
| 10 |
4 9
|
biimtrid |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 − 𝑋 ) = 𝑌 → 𝑌 = 0 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 − 𝑋 ) = 𝑌 → 𝑌 = 0 ) ) |
| 12 |
3 11
|
sylbird |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 + 𝑌 ) = 𝑋 → 𝑌 = 0 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑌 = 0 → ( 𝑋 + 𝑌 ) = ( 𝑋 + 0 ) ) |
| 14 |
|
addrid |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + 0 ) = 𝑋 ) |
| 15 |
13 14
|
sylan9eqr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 = 0 ) → ( 𝑋 + 𝑌 ) = 𝑋 ) |
| 16 |
15
|
ex |
⊢ ( 𝑋 ∈ ℂ → ( 𝑌 = 0 → ( 𝑋 + 𝑌 ) = 𝑋 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( 𝑌 = 0 → ( 𝑋 + 𝑌 ) = 𝑋 ) ) |
| 18 |
12 17
|
impbid |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 + 𝑌 ) = 𝑋 ↔ 𝑌 = 0 ) ) |