| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpgt0 | ⊢ ( 𝐴  ∈  ℝ+  →  0  <  𝐴 ) | 
						
							| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  0  <  𝐴 ) | 
						
							| 3 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  𝑀  ∈  ℝ ) | 
						
							| 6 | 4 5 | ltaddposd | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  ( 0  <  𝐴  ↔  𝑀  <  ( 𝑀  +  𝐴 ) ) ) | 
						
							| 7 | 2 6 | mpbid | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  𝑀  <  ( 𝑀  +  𝐴 ) ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  𝑀  ∈  ℝ ) | 
						
							| 9 | 3 | adantl | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  𝐴  ∈  ℝ ) | 
						
							| 10 | 8 9 | readdcld | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  ( 𝑀  +  𝐴 )  ∈  ℝ ) | 
						
							| 11 | 10 | 3adant2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  ( 𝑀  +  𝐴 )  ∈  ℝ ) | 
						
							| 12 |  | simp2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  𝑁  ∈  ℝ ) | 
						
							| 13 |  | ltletr | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( 𝑀  +  𝐴 )  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 𝑀  <  ( 𝑀  +  𝐴 )  ∧  ( 𝑀  +  𝐴 )  ≤  𝑁 )  →  𝑀  <  𝑁 ) ) | 
						
							| 14 | 5 11 12 13 | syl3anc | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  ( ( 𝑀  <  ( 𝑀  +  𝐴 )  ∧  ( 𝑀  +  𝐴 )  ≤  𝑁 )  →  𝑀  <  𝑁 ) ) | 
						
							| 15 | 7 14 | mpand | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  ( ( 𝑀  +  𝐴 )  ≤  𝑁  →  𝑀  <  𝑁 ) ) |