| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addlsub.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | addlsub.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | addlsub.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | oveq1 | ⊢ ( ( 𝐴  +  𝐵 )  =  𝐶  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 5 | 1 2 | pncand | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 ) | 
						
							| 6 |  | eqtr2 | ⊢ ( ( ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  ( 𝐶  −  𝐵 )  ∧  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 )  →  ( 𝐶  −  𝐵 )  =  𝐴 ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( ( ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  ( 𝐶  −  𝐵 )  ∧  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 )  →  𝐴  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  ( 𝐶  −  𝐵 )  ∧  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 )  →  𝐴  =  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 9 | 5 8 | mpan2d | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  ( 𝐶  −  𝐵 )  →  𝐴  =  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 10 | 4 9 | syl5 | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  =  𝐶  →  𝐴  =  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝐴  =  ( 𝐶  −  𝐵 )  →  ( 𝐴  +  𝐵 )  =  ( ( 𝐶  −  𝐵 )  +  𝐵 ) ) | 
						
							| 12 | 3 2 | npcand | ⊢ ( 𝜑  →  ( ( 𝐶  −  𝐵 )  +  𝐵 )  =  𝐶 ) | 
						
							| 13 |  | eqtr | ⊢ ( ( ( 𝐴  +  𝐵 )  =  ( ( 𝐶  −  𝐵 )  +  𝐵 )  ∧  ( ( 𝐶  −  𝐵 )  +  𝐵 )  =  𝐶 )  →  ( 𝐴  +  𝐵 )  =  𝐶 ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝐵 )  =  ( ( 𝐶  −  𝐵 )  +  𝐵 )  ∧  ( ( 𝐶  −  𝐵 )  +  𝐵 )  =  𝐶 )  →  ( 𝐴  +  𝐵 )  =  𝐶 ) ) | 
						
							| 15 | 12 14 | mpan2d | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  =  ( ( 𝐶  −  𝐵 )  +  𝐵 )  →  ( 𝐴  +  𝐵 )  =  𝐶 ) ) | 
						
							| 16 | 11 15 | syl5 | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝐶  −  𝐵 )  →  ( 𝐴  +  𝐵 )  =  𝐶 ) ) | 
						
							| 17 | 10 16 | impbid | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  =  𝐶  ↔  𝐴  =  ( 𝐶  −  𝐵 ) ) ) |