| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 2 | 1 | mullidd | ⊢ ( 𝑀  ∈  ℕ  →  ( 1  ·  𝑀 )  =  𝑀 ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  ( 1  ·  𝑀 )  =  𝑀 ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  𝑀  =  ( 1  ·  𝑀 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  ( 𝑀  +  𝐴 )  =  ( ( 1  ·  𝑀 )  +  𝐴 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  ( ( 𝑀  +  𝐴 )  mod  𝑀 )  =  ( ( ( 1  ·  𝑀 )  +  𝐴 )  mod  𝑀 ) ) | 
						
							| 7 |  | 1zzd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  1  ∈  ℤ ) | 
						
							| 8 |  | nnrp | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ+ ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  𝑀  ∈  ℝ+ ) | 
						
							| 10 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 11 | 10 | rexrd | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ* ) | 
						
							| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  𝐴  ∈  ℝ* ) | 
						
							| 13 |  | nn0ge0 | ⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  𝐴 ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  0  ≤  𝐴 ) | 
						
							| 15 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  𝐴  <  𝑀 ) | 
						
							| 16 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 17 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 18 | 17 | rexrd | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ* ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  𝑀  ∈  ℝ* ) | 
						
							| 20 |  | elico1 | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑀  ∈  ℝ* )  →  ( 𝐴  ∈  ( 0 [,) 𝑀 )  ↔  ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴  ∧  𝐴  <  𝑀 ) ) ) | 
						
							| 21 | 16 19 20 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  ( 𝐴  ∈  ( 0 [,) 𝑀 )  ↔  ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴  ∧  𝐴  <  𝑀 ) ) ) | 
						
							| 22 | 12 14 15 21 | mpbir3and | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  𝐴  ∈  ( 0 [,) 𝑀 ) ) | 
						
							| 23 |  | muladdmodid | ⊢ ( ( 1  ∈  ℤ  ∧  𝑀  ∈  ℝ+  ∧  𝐴  ∈  ( 0 [,) 𝑀 ) )  →  ( ( ( 1  ·  𝑀 )  +  𝐴 )  mod  𝑀 )  =  𝐴 ) | 
						
							| 24 | 7 9 22 23 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  ( ( ( 1  ·  𝑀 )  +  𝐴 )  mod  𝑀 )  =  𝐴 ) | 
						
							| 25 | 6 24 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑀  ∈  ℕ  ∧  𝐴  <  𝑀 )  →  ( ( 𝑀  +  𝐴 )  mod  𝑀 )  =  𝐴 ) |