Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmodidr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( ( 𝐴 + 𝑀 ) mod 𝑀 ) = 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0cn | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) | |
| 2 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 3 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝐴 + 𝑀 ) = ( 𝑀 + 𝐴 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( 𝐴 + 𝑀 ) = ( 𝑀 + 𝐴 ) ) | 
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( 𝐴 + 𝑀 ) = ( 𝑀 + 𝐴 ) ) | 
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( ( 𝐴 + 𝑀 ) mod 𝑀 ) = ( ( 𝑀 + 𝐴 ) mod 𝑀 ) ) | 
| 7 | addmodid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( ( 𝑀 + 𝐴 ) mod 𝑀 ) = 𝐴 ) | |
| 8 | 6 7 | eqtrd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( ( 𝐴 + 𝑀 ) mod 𝑀 ) = 𝐴 ) |