Metamath Proof Explorer


Theorem addn0nid

Description: Adding a nonzero number to a complex number does not yield the complex number. (Contributed by AV, 17-Jan-2021)

Ref Expression
Assertion addn0nid ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑌 ≠ 0 ) → ( 𝑋 + 𝑌 ) ≠ 𝑋 )

Proof

Step Hyp Ref Expression
1 addid0 ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 + 𝑌 ) = 𝑋𝑌 = 0 ) )
2 1 biimpd ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( ( 𝑋 + 𝑌 ) = 𝑋𝑌 = 0 ) )
3 2 necon3d ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ) → ( 𝑌 ≠ 0 → ( 𝑋 + 𝑌 ) ≠ 𝑋 ) )
4 3 3impia ( ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑌 ≠ 0 ) → ( 𝑋 + 𝑌 ) ≠ 𝑋 )