Description: Addition with product with minus one is a subtraction. (Contributed by AV, 18-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | addneg1mul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1 | ⊢ ( 𝐵 ∈ ℂ → ( - 1 · 𝐵 ) = - 𝐵 ) | |
2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
3 | 2 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( 𝐴 + - 𝐵 ) ) |
4 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
5 | 3 4 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |