Metamath Proof Explorer


Theorem addneg1mul

Description: Addition with product with minus one is a subtraction. (Contributed by AV, 18-Oct-2021)

Ref Expression
Assertion addneg1mul ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 mulm1 ( 𝐵 ∈ ℂ → ( - 1 · 𝐵 ) = - 𝐵 )
2 1 adantl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · 𝐵 ) = - 𝐵 )
3 2 oveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( 𝐴 + - 𝐵 ) )
4 negsub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
5 3 4 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( 𝐴𝐵 ) )