Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
addneintr2d
Metamath Proof Explorer
Description: Introducing a term on the right-hand side of a sum in a negated
equality. Contrapositive of addcan2ad . Consequence of
addcan2d . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
muld.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
addcomd.2
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
addcand.3
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
addneintr2d.4
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 )
Assertion
addneintr2d
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) )
Proof
Step
Hyp
Ref
Expression
1
muld.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
2
addcomd.2
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
3
addcand.3
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
4
addneintr2d.4
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 )
5
1 2 3
addcan2d
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) )
6
5
necon3bid
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) ↔ 𝐴 ≠ 𝐵 ) )
7
4 6
mpbird
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) )