Metamath Proof Explorer


Theorem addneintr2d

Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad . Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 ( 𝜑𝐴 ∈ ℂ )
addcomd.2 ( 𝜑𝐵 ∈ ℂ )
addcand.3 ( 𝜑𝐶 ∈ ℂ )
addneintr2d.4 ( 𝜑𝐴𝐵 )
Assertion addneintr2d ( 𝜑 → ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 muld.1 ( 𝜑𝐴 ∈ ℂ )
2 addcomd.2 ( 𝜑𝐵 ∈ ℂ )
3 addcand.3 ( 𝜑𝐶 ∈ ℂ )
4 addneintr2d.4 ( 𝜑𝐴𝐵 )
5 1 2 3 addcan2d ( 𝜑 → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) )
6 5 necon3bid ( 𝜑 → ( ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) ↔ 𝐴𝐵 ) )
7 4 6 mpbird ( 𝜑 → ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) )