Database REAL AND COMPLEX NUMBERS Derive the basic properties from the field axioms Initial properties of the complex numbers addneintrd  
				
		 
		
			
		 
		Description:   Introducing a term on the left-hand side of a sum in a negated
         equality.  Contrapositive of addcanad  .  Consequence of addcand  .
         (Contributed by David Moews , 28-Feb-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						muld.1 ⊢  ( 𝜑   →  𝐴   ∈  ℂ )  
					
						addcomd.2 ⊢  ( 𝜑   →  𝐵   ∈  ℂ )  
					
						addcand.3 ⊢  ( 𝜑   →  𝐶   ∈  ℂ )  
					
						addneintrd.4 ⊢  ( 𝜑   →  𝐵   ≠  𝐶  )  
				
					Assertion 
					addneintrd ⊢   ( 𝜑   →  ( 𝐴   +  𝐵  )  ≠  ( 𝐴   +  𝐶  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							muld.1 ⊢  ( 𝜑   →  𝐴   ∈  ℂ )  
						
							2 
								
							 
							addcomd.2 ⊢  ( 𝜑   →  𝐵   ∈  ℂ )  
						
							3 
								
							 
							addcand.3 ⊢  ( 𝜑   →  𝐶   ∈  ℂ )  
						
							4 
								
							 
							addneintrd.4 ⊢  ( 𝜑   →  𝐵   ≠  𝐶  )  
						
							5 
								1  2  3 
							 
							addcand ⊢  ( 𝜑   →  ( ( 𝐴   +  𝐵  )  =  ( 𝐴   +  𝐶  )  ↔  𝐵   =  𝐶  ) )  
						
							6 
								5 
							 
							necon3bid ⊢  ( 𝜑   →  ( ( 𝐴   +  𝐵  )  ≠  ( 𝐴   +  𝐶  )  ↔  𝐵   ≠  𝐶  ) )  
						
							7 
								4  6 
							 
							mpbird ⊢  ( 𝜑   →  ( 𝐴   +  𝐵  )  ≠  ( 𝐴   +  𝐶  ) )