Step |
Hyp |
Ref |
Expression |
1 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
2 |
|
elni2 |
⊢ ( 𝐵 ∈ N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) |
3 |
|
nnaordi |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
4 |
|
nna0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) |
5 |
4
|
eleq1d |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) ) |
6 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
7 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴 ) |
9 |
|
eleq2 |
⊢ ( ( 𝐴 +o 𝐵 ) = 𝐴 → ( 𝐴 ∈ ( 𝐴 +o 𝐵 ) ↔ 𝐴 ∈ 𝐴 ) ) |
10 |
9
|
notbid |
⊢ ( ( 𝐴 +o 𝐵 ) = 𝐴 → ( ¬ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ↔ ¬ 𝐴 ∈ 𝐴 ) ) |
11 |
8 10
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 +o 𝐵 ) = 𝐴 → ¬ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) ) |
12 |
11
|
con2d |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
13 |
5 12
|
sylbid |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
15 |
3 14
|
syld |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
16 |
15
|
expcom |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ∅ ∈ 𝐵 → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) ) |
17 |
16
|
imp32 |
⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) |
18 |
2 17
|
sylan2b |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ N ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) |
19 |
1 18
|
sylan |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) |
20 |
|
addpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) ) |
21 |
20
|
eqeq1d |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 ↔ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
22 |
19 21
|
mtbird |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) |
23 |
22
|
a1d |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ∈ N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) ) |
24 |
|
dmaddpi |
⊢ dom +N = ( N × N ) |
25 |
24
|
ndmov |
⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ∅ ) |
26 |
25
|
eqeq1d |
⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 ↔ ∅ = 𝐴 ) ) |
27 |
|
0npi |
⊢ ¬ ∅ ∈ N |
28 |
|
eleq1 |
⊢ ( ∅ = 𝐴 → ( ∅ ∈ N ↔ 𝐴 ∈ N ) ) |
29 |
27 28
|
mtbii |
⊢ ( ∅ = 𝐴 → ¬ 𝐴 ∈ N ) |
30 |
26 29
|
syl6bi |
⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 → ¬ 𝐴 ∈ N ) ) |
31 |
30
|
con2d |
⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ∈ N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) ) |
32 |
23 31
|
pm2.61i |
⊢ ( 𝐴 ∈ N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) |