Metamath Proof Explorer


Theorem addnidpi

Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995) (New usage is discouraged.)

Ref Expression
Assertion addnidpi ( 𝐴N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 pinn ( 𝐴N𝐴 ∈ ω )
2 elni2 ( 𝐵N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) )
3 nnaordi ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) )
4 nna0 ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 )
5 4 eleq1d ( 𝐴 ∈ ω → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) )
6 nnord ( 𝐴 ∈ ω → Ord 𝐴 )
7 ordirr ( Ord 𝐴 → ¬ 𝐴𝐴 )
8 6 7 syl ( 𝐴 ∈ ω → ¬ 𝐴𝐴 )
9 eleq2 ( ( 𝐴 +o 𝐵 ) = 𝐴 → ( 𝐴 ∈ ( 𝐴 +o 𝐵 ) ↔ 𝐴𝐴 ) )
10 9 notbid ( ( 𝐴 +o 𝐵 ) = 𝐴 → ( ¬ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ↔ ¬ 𝐴𝐴 ) )
11 8 10 syl5ibrcom ( 𝐴 ∈ ω → ( ( 𝐴 +o 𝐵 ) = 𝐴 → ¬ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) )
12 11 con2d ( 𝐴 ∈ ω → ( 𝐴 ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) )
13 5 12 sylbid ( 𝐴 ∈ ω → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) )
14 13 adantl ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) )
15 3 14 syld ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) )
16 15 expcom ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ∅ ∈ 𝐵 → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) )
17 16 imp32 ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 )
18 2 17 sylan2b ( ( 𝐴 ∈ ω ∧ 𝐵N ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 )
19 1 18 sylan ( ( 𝐴N𝐵N ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 )
20 addpiord ( ( 𝐴N𝐵N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) )
21 20 eqeq1d ( ( 𝐴N𝐵N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 ↔ ( 𝐴 +o 𝐵 ) = 𝐴 ) )
22 19 21 mtbird ( ( 𝐴N𝐵N ) → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 )
23 22 a1d ( ( 𝐴N𝐵N ) → ( 𝐴N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) )
24 dmaddpi dom +N = ( N × N )
25 24 ndmov ( ¬ ( 𝐴N𝐵N ) → ( 𝐴 +N 𝐵 ) = ∅ )
26 25 eqeq1d ( ¬ ( 𝐴N𝐵N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 ↔ ∅ = 𝐴 ) )
27 0npi ¬ ∅ ∈ N
28 eleq1 ( ∅ = 𝐴 → ( ∅ ∈ N𝐴N ) )
29 27 28 mtbii ( ∅ = 𝐴 → ¬ 𝐴N )
30 26 29 syl6bi ( ¬ ( 𝐴N𝐵N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 → ¬ 𝐴N ) )
31 30 con2d ( ¬ ( 𝐴N𝐵N ) → ( 𝐴N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) )
32 23 31 pm2.61i ( 𝐴N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 )