Step |
Hyp |
Ref |
Expression |
1 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) |
2 |
|
opelxpi |
⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) |
3 |
|
addpipq2 |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) → ( 〈 𝐴 , 𝐵 〉 +pQ 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) +N ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) , ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) 〉 ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 +pQ 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) +N ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) , ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) 〉 ) |
5 |
|
op1stg |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
6 |
|
op2ndg |
⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
7 |
5 6
|
oveqan12d |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) = ( 𝐴 ·N 𝐷 ) ) |
8 |
|
op1stg |
⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
9 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
10 |
8 9
|
oveqan12rd |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝐶 ·N 𝐵 ) ) |
11 |
7 10
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) +N ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) = ( ( 𝐴 ·N 𝐷 ) +N ( 𝐶 ·N 𝐵 ) ) ) |
12 |
9 6
|
oveqan12d |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) = ( 𝐵 ·N 𝐷 ) ) |
13 |
11 12
|
opeq12d |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → 〈 ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) +N ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) , ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) 〉 = 〈 ( ( 𝐴 ·N 𝐷 ) +N ( 𝐶 ·N 𝐵 ) ) , ( 𝐵 ·N 𝐷 ) 〉 ) |
14 |
4 13
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 +pQ 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( 𝐴 ·N 𝐷 ) +N ( 𝐶 ·N 𝐵 ) ) , ( 𝐵 ·N 𝐷 ) 〉 ) |