Metamath Proof Explorer


Theorem addpqf

Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion addpqf +pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N )

Proof

Step Hyp Ref Expression
1 xp1st ( 𝑥 ∈ ( N × N ) → ( 1st𝑥 ) ∈ N )
2 xp2nd ( 𝑦 ∈ ( N × N ) → ( 2nd𝑦 ) ∈ N )
3 mulclpi ( ( ( 1st𝑥 ) ∈ N ∧ ( 2nd𝑦 ) ∈ N ) → ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) ∈ N )
4 1 2 3 syl2an ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) ∈ N )
5 xp1st ( 𝑦 ∈ ( N × N ) → ( 1st𝑦 ) ∈ N )
6 xp2nd ( 𝑥 ∈ ( N × N ) → ( 2nd𝑥 ) ∈ N )
7 mulclpi ( ( ( 1st𝑦 ) ∈ N ∧ ( 2nd𝑥 ) ∈ N ) → ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ∈ N )
8 5 6 7 syl2anr ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ∈ N )
9 addclpi ( ( ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) ∈ N ∧ ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ∈ N ) → ( ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) +N ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ) ∈ N )
10 4 8 9 syl2anc ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) +N ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ) ∈ N )
11 mulclpi ( ( ( 2nd𝑥 ) ∈ N ∧ ( 2nd𝑦 ) ∈ N ) → ( ( 2nd𝑥 ) ·N ( 2nd𝑦 ) ) ∈ N )
12 6 2 11 syl2an ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( ( 2nd𝑥 ) ·N ( 2nd𝑦 ) ) ∈ N )
13 10 12 opelxpd ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ⟨ ( ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) +N ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ) , ( ( 2nd𝑥 ) ·N ( 2nd𝑦 ) ) ⟩ ∈ ( N × N ) )
14 13 rgen2 𝑥 ∈ ( N × N ) ∀ 𝑦 ∈ ( N × N ) ⟨ ( ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) +N ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ) , ( ( 2nd𝑥 ) ·N ( 2nd𝑦 ) ) ⟩ ∈ ( N × N )
15 df-plpq +pQ = ( 𝑥 ∈ ( N × N ) , 𝑦 ∈ ( N × N ) ↦ ⟨ ( ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) +N ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ) , ( ( 2nd𝑥 ) ·N ( 2nd𝑦 ) ) ⟩ )
16 15 fmpo ( ∀ 𝑥 ∈ ( N × N ) ∀ 𝑦 ∈ ( N × N ) ⟨ ( ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) +N ( ( 1st𝑦 ) ·N ( 2nd𝑥 ) ) ) , ( ( 2nd𝑥 ) ·N ( 2nd𝑦 ) ) ⟩ ∈ ( N × N ) ↔ +pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) )
17 14 16 mpbi +pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N )