| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
ax-rnegex |
⊢ ( 1 ∈ ℝ → ∃ 𝑐 ∈ ℝ ( 1 + 𝑐 ) = 0 ) |
| 3 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 4 |
|
oveq2 |
⊢ ( 𝑐 = 0 → ( 1 + 𝑐 ) = ( 1 + 0 ) ) |
| 5 |
4
|
eqeq1d |
⊢ ( 𝑐 = 0 → ( ( 1 + 𝑐 ) = 0 ↔ ( 1 + 0 ) = 0 ) ) |
| 6 |
5
|
biimpcd |
⊢ ( ( 1 + 𝑐 ) = 0 → ( 𝑐 = 0 → ( 1 + 0 ) = 0 ) ) |
| 7 |
|
oveq2 |
⊢ ( ( 1 + 0 ) = 0 → ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( i · i ) · ( i · i ) ) · 0 ) ) |
| 8 |
|
ax-icn |
⊢ i ∈ ℂ |
| 9 |
8 8
|
mulcli |
⊢ ( i · i ) ∈ ℂ |
| 10 |
9 9
|
mulcli |
⊢ ( ( i · i ) · ( i · i ) ) ∈ ℂ |
| 11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 12 |
|
0cn |
⊢ 0 ∈ ℂ |
| 13 |
10 11 12
|
adddii |
⊢ ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( ( i · i ) · ( i · i ) ) · 1 ) + ( ( ( i · i ) · ( i · i ) ) · 0 ) ) |
| 14 |
10
|
mulridi |
⊢ ( ( ( i · i ) · ( i · i ) ) · 1 ) = ( ( i · i ) · ( i · i ) ) |
| 15 |
|
mul01 |
⊢ ( ( ( i · i ) · ( i · i ) ) ∈ ℂ → ( ( ( i · i ) · ( i · i ) ) · 0 ) = 0 ) |
| 16 |
10 15
|
ax-mp |
⊢ ( ( ( i · i ) · ( i · i ) ) · 0 ) = 0 |
| 17 |
|
ax-i2m1 |
⊢ ( ( i · i ) + 1 ) = 0 |
| 18 |
16 17
|
eqtr4i |
⊢ ( ( ( i · i ) · ( i · i ) ) · 0 ) = ( ( i · i ) + 1 ) |
| 19 |
14 18
|
oveq12i |
⊢ ( ( ( ( i · i ) · ( i · i ) ) · 1 ) + ( ( ( i · i ) · ( i · i ) ) · 0 ) ) = ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) |
| 20 |
13 19
|
eqtri |
⊢ ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) |
| 21 |
20 16
|
eqeq12i |
⊢ ( ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( i · i ) · ( i · i ) ) · 0 ) ↔ ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) = 0 ) |
| 22 |
10 9 11
|
addassi |
⊢ ( ( ( ( i · i ) · ( i · i ) ) + ( i · i ) ) + 1 ) = ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) |
| 23 |
9
|
mulridi |
⊢ ( ( i · i ) · 1 ) = ( i · i ) |
| 24 |
23
|
oveq2i |
⊢ ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) · 1 ) ) = ( ( ( i · i ) · ( i · i ) ) + ( i · i ) ) |
| 25 |
9 9 11
|
adddii |
⊢ ( ( i · i ) · ( ( i · i ) + 1 ) ) = ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) · 1 ) ) |
| 26 |
17
|
oveq2i |
⊢ ( ( i · i ) · ( ( i · i ) + 1 ) ) = ( ( i · i ) · 0 ) |
| 27 |
|
mul01 |
⊢ ( ( i · i ) ∈ ℂ → ( ( i · i ) · 0 ) = 0 ) |
| 28 |
9 27
|
ax-mp |
⊢ ( ( i · i ) · 0 ) = 0 |
| 29 |
26 28
|
eqtri |
⊢ ( ( i · i ) · ( ( i · i ) + 1 ) ) = 0 |
| 30 |
25 29
|
eqtr3i |
⊢ ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) · 1 ) ) = 0 |
| 31 |
24 30
|
eqtr3i |
⊢ ( ( ( i · i ) · ( i · i ) ) + ( i · i ) ) = 0 |
| 32 |
31
|
oveq1i |
⊢ ( ( ( ( i · i ) · ( i · i ) ) + ( i · i ) ) + 1 ) = ( 0 + 1 ) |
| 33 |
22 32
|
eqtr3i |
⊢ ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) = ( 0 + 1 ) |
| 34 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 35 |
34
|
eqcomi |
⊢ 0 = ( 0 + 0 ) |
| 36 |
33 35
|
eqeq12i |
⊢ ( ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) = 0 ↔ ( 0 + 1 ) = ( 0 + 0 ) ) |
| 37 |
|
0re |
⊢ 0 ∈ ℝ |
| 38 |
|
readdcan |
⊢ ( ( 1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) ) |
| 39 |
1 37 37 38
|
mp3an |
⊢ ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) |
| 40 |
21 36 39
|
3bitri |
⊢ ( ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( i · i ) · ( i · i ) ) · 0 ) ↔ 1 = 0 ) |
| 41 |
7 40
|
sylib |
⊢ ( ( 1 + 0 ) = 0 → 1 = 0 ) |
| 42 |
6 41
|
syl6 |
⊢ ( ( 1 + 𝑐 ) = 0 → ( 𝑐 = 0 → 1 = 0 ) ) |
| 43 |
42
|
necon3d |
⊢ ( ( 1 + 𝑐 ) = 0 → ( 1 ≠ 0 → 𝑐 ≠ 0 ) ) |
| 44 |
3 43
|
mpi |
⊢ ( ( 1 + 𝑐 ) = 0 → 𝑐 ≠ 0 ) |
| 45 |
|
ax-rrecex |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑐 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝑐 · 𝑥 ) = 1 ) |
| 46 |
44 45
|
sylan2 |
⊢ ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) → ∃ 𝑥 ∈ ℝ ( 𝑐 · 𝑥 ) = 1 ) |
| 47 |
|
simpr |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 48 |
|
simplrl |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝑥 ∈ ℝ ) |
| 49 |
48
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
| 50 |
47 49
|
mulcld |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 51 |
|
simplll |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝑐 ∈ ℝ ) |
| 52 |
51
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝑐 ∈ ℂ ) |
| 53 |
12
|
a1i |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 0 ∈ ℂ ) |
| 54 |
50 52 53
|
adddid |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · ( 𝑐 + 0 ) ) = ( ( ( 𝐴 · 𝑥 ) · 𝑐 ) + ( ( 𝐴 · 𝑥 ) · 0 ) ) ) |
| 55 |
11
|
a1i |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 1 ∈ ℂ ) |
| 56 |
55 52 53
|
addassd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 1 + 𝑐 ) + 0 ) = ( 1 + ( 𝑐 + 0 ) ) ) |
| 57 |
|
simpllr |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 1 + 𝑐 ) = 0 ) |
| 58 |
57
|
oveq1d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 1 + 𝑐 ) + 0 ) = ( 0 + 0 ) ) |
| 59 |
56 58
|
eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 1 + ( 𝑐 + 0 ) ) = ( 0 + 0 ) ) |
| 60 |
34 59 57
|
3eqtr4a |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 1 + ( 𝑐 + 0 ) ) = ( 1 + 𝑐 ) ) |
| 61 |
37
|
a1i |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 0 ∈ ℝ ) |
| 62 |
51 61
|
readdcld |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝑐 + 0 ) ∈ ℝ ) |
| 63 |
1
|
a1i |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 1 ∈ ℝ ) |
| 64 |
|
readdcan |
⊢ ( ( ( 𝑐 + 0 ) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 + ( 𝑐 + 0 ) ) = ( 1 + 𝑐 ) ↔ ( 𝑐 + 0 ) = 𝑐 ) ) |
| 65 |
62 51 63 64
|
syl3anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 1 + ( 𝑐 + 0 ) ) = ( 1 + 𝑐 ) ↔ ( 𝑐 + 0 ) = 𝑐 ) ) |
| 66 |
60 65
|
mpbid |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝑐 + 0 ) = 𝑐 ) |
| 67 |
66
|
oveq2d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · ( 𝑐 + 0 ) ) = ( ( 𝐴 · 𝑥 ) · 𝑐 ) ) |
| 68 |
54 67
|
eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( ( 𝐴 · 𝑥 ) · 𝑐 ) + ( ( 𝐴 · 𝑥 ) · 0 ) ) = ( ( 𝐴 · 𝑥 ) · 𝑐 ) ) |
| 69 |
|
mul31 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · 𝑐 ) = ( ( 𝑐 · 𝑥 ) · 𝐴 ) ) |
| 70 |
47 49 52 69
|
syl3anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · 𝑐 ) = ( ( 𝑐 · 𝑥 ) · 𝐴 ) ) |
| 71 |
|
simplrr |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝑐 · 𝑥 ) = 1 ) |
| 72 |
71
|
oveq1d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝑐 · 𝑥 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 73 |
47
|
mullidd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 74 |
70 72 73
|
3eqtrd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · 𝑐 ) = 𝐴 ) |
| 75 |
|
mul01 |
⊢ ( ( 𝐴 · 𝑥 ) ∈ ℂ → ( ( 𝐴 · 𝑥 ) · 0 ) = 0 ) |
| 76 |
50 75
|
syl |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · 0 ) = 0 ) |
| 77 |
74 76
|
oveq12d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( ( 𝐴 · 𝑥 ) · 𝑐 ) + ( ( 𝐴 · 𝑥 ) · 0 ) ) = ( 𝐴 + 0 ) ) |
| 78 |
68 77 74
|
3eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 79 |
78
|
exp42 |
⊢ ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) → ( 𝑥 ∈ ℝ → ( ( 𝑐 · 𝑥 ) = 1 → ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) ) ) ) |
| 80 |
79
|
rexlimdv |
⊢ ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) → ( ∃ 𝑥 ∈ ℝ ( 𝑐 · 𝑥 ) = 1 → ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) ) ) |
| 81 |
46 80
|
mpd |
⊢ ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) → ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) ) |
| 82 |
81
|
rexlimiva |
⊢ ( ∃ 𝑐 ∈ ℝ ( 1 + 𝑐 ) = 0 → ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) ) |
| 83 |
1 2 82
|
mp2b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |