Description: Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addlsub.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
addlsub.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
addlsub.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
Assertion | addrsub | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ 𝐵 = ( 𝐶 − 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlsub.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | addlsub.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | addlsub.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
4 | 1 2 | addcomd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
5 | 4 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐴 ) = 𝐶 ) ) |
6 | 2 1 3 | addlsub | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) = 𝐶 ↔ 𝐵 = ( 𝐶 − 𝐴 ) ) ) |
7 | 5 6 | bitrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ 𝐵 = ( 𝐶 − 𝐴 ) ) ) |