Metamath Proof Explorer


Theorem addrsub

Description: Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses addlsub.a ( 𝜑𝐴 ∈ ℂ )
addlsub.b ( 𝜑𝐵 ∈ ℂ )
addlsub.c ( 𝜑𝐶 ∈ ℂ )
Assertion addrsub ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶𝐵 = ( 𝐶𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 addlsub.a ( 𝜑𝐴 ∈ ℂ )
2 addlsub.b ( 𝜑𝐵 ∈ ℂ )
3 addlsub.c ( 𝜑𝐶 ∈ ℂ )
4 1 2 addcomd ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )
5 4 eqeq1d ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐴 ) = 𝐶 ) )
6 2 1 3 addlsub ( 𝜑 → ( ( 𝐵 + 𝐴 ) = 𝐶𝐵 = ( 𝐶𝐴 ) ) )
7 5 6 bitrd ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶𝐵 = ( 𝐶𝐴 ) ) )