Metamath Proof Explorer


Theorem adds12d

Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsassd.1 ( 𝜑𝐴 No )
addsassd.2 ( 𝜑𝐵 No )
addsassd.3 ( 𝜑𝐶 No )
Assertion adds12d ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addsassd.1 ( 𝜑𝐴 No )
2 addsassd.2 ( 𝜑𝐵 No )
3 addsassd.3 ( 𝜑𝐶 No )
4 1 2 addscomd ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) )
5 4 oveq1d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( 𝐵 +s 𝐴 ) +s 𝐶 ) )
6 1 2 3 addsassd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) )
7 2 1 3 addsassd ( 𝜑 → ( ( 𝐵 +s 𝐴 ) +s 𝐶 ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) )
8 5 6 7 3eqtr3d ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) )