Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addsassd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
addsassd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
addsassd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
Assertion | adds12d | ⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsassd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | addsassd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | addsassd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
4 | 1 2 | addscomd | ⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) |
5 | 4 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( 𝐵 +s 𝐴 ) +s 𝐶 ) ) |
6 | 1 2 3 | addsassd | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |
7 | 2 1 3 | addsassd | ⊢ ( 𝜑 → ( ( 𝐵 +s 𝐴 ) +s 𝐶 ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) ) |
8 | 5 6 7 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) ) |