Metamath Proof Explorer


Theorem adds42d

Description: Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses adds4d.1 ( 𝜑𝐴 No )
adds4d.2 ( 𝜑𝐵 No )
adds4d.3 ( 𝜑𝐶 No )
adds4d.4 ( 𝜑𝐷 No )
Assertion adds42d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 adds4d.1 ( 𝜑𝐴 No )
2 adds4d.2 ( 𝜑𝐵 No )
3 adds4d.3 ( 𝜑𝐶 No )
4 adds4d.4 ( 𝜑𝐷 No )
5 1 2 3 4 adds4d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐵 +s 𝐷 ) ) )
6 2 4 addscomd ( 𝜑 → ( 𝐵 +s 𝐷 ) = ( 𝐷 +s 𝐵 ) )
7 6 oveq2d ( 𝜑 → ( ( 𝐴 +s 𝐶 ) +s ( 𝐵 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) )
8 5 7 eqtrd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) )