Description: Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | adds4d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
adds4d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
adds4d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
adds4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ No ) | ||
Assertion | adds42d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adds4d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | adds4d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | adds4d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
4 | adds4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ No ) | |
5 | 1 2 3 4 | adds4d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐵 +s 𝐷 ) ) ) |
6 | 2 4 | addscomd | ⊢ ( 𝜑 → ( 𝐵 +s 𝐷 ) = ( 𝐷 +s 𝐵 ) ) |
7 | 6 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐶 ) +s ( 𝐵 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) ) |
8 | 5 7 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) ) |