| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s 𝑦 ) = ( 𝑥𝑂 +s 𝑦 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) |
| 4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑥𝑂 +s 𝑦𝑂 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑧 ) = ( 𝑦𝑂 +s 𝑧 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ) |
| 9 |
6 8
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑦𝑂 +s 𝑧 ) = ( 𝑦𝑂 +s 𝑧𝑂 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
| 13 |
10 12
|
eqeq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥𝑂 +s 𝑦𝑂 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
| 17 |
15 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥 +s 𝑦 ) = ( 𝑥 +s 𝑦𝑂 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦𝑂 +s 𝑧𝑂 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
| 22 |
19 21
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
| 23 |
5
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
| 24 |
20
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
| 25 |
23 24
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
| 27 |
11
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
| 28 |
26 27
|
eqeq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ↔ ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
| 29 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s 𝑦 ) = ( 𝐴 +s 𝑦 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( ( 𝐴 +s 𝑦 ) +s 𝑧 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) = ( 𝐴 +s ( 𝑦 +s 𝑧 ) ) ) |
| 32 |
30 31
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝐴 +s 𝑦 ) +s 𝑧 ) = ( 𝐴 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s 𝑦 ) = ( 𝐴 +s 𝐵 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 +s 𝑦 ) +s 𝑧 ) = ( ( 𝐴 +s 𝐵 ) +s 𝑧 ) ) |
| 35 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝑧 ) = ( 𝐵 +s 𝑧 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s ( 𝑦 +s 𝑧 ) ) = ( 𝐴 +s ( 𝐵 +s 𝑧 ) ) ) |
| 37 |
34 36
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 +s 𝑦 ) +s 𝑧 ) = ( 𝐴 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝐴 +s 𝐵 ) +s 𝑧 ) = ( 𝐴 +s ( 𝐵 +s 𝑧 ) ) ) ) |
| 38 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 +s 𝐵 ) +s 𝑧 ) = ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 +s 𝑧 ) = ( 𝐵 +s 𝐶 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 +s ( 𝐵 +s 𝑧 ) ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |
| 41 |
38 40
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 +s 𝐵 ) +s 𝑧 ) = ( 𝐴 +s ( 𝐵 +s 𝑧 ) ) ↔ ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) ) |
| 42 |
|
simp21 |
⊢ ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) |
| 43 |
|
simp23 |
⊢ ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) |
| 44 |
|
simp3 |
⊢ ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) |
| 45 |
42 43 44
|
3jca |
⊢ ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) |
| 46 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑥𝐿 +s 𝑦 ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) ) |
| 48 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) |
| 49 |
47 48
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 50 |
|
simplr1 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) |
| 51 |
|
elun1 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 52 |
51
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 53 |
49 50 52
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) |
| 54 |
53
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) ↔ 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 55 |
54
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 56 |
55
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ) |
| 57 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥 +s 𝑦𝐿 ) ) |
| 58 |
57
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) ) |
| 59 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( 𝑦𝑂 +s 𝑧 ) = ( 𝑦𝐿 +s 𝑧 ) ) |
| 60 |
59
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) |
| 61 |
58 60
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ↔ ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) ) |
| 62 |
|
simplr2 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) |
| 63 |
|
elun1 |
⊢ ( 𝑦𝐿 ∈ ( L ‘ 𝑦 ) → 𝑦𝐿 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
| 64 |
63
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → 𝑦𝐿 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
| 65 |
61 62 64
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) |
| 66 |
65
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → ( 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) ↔ 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) ) |
| 67 |
66
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) ) |
| 68 |
67
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } = { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) |
| 69 |
56 68
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) ) |
| 70 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) ) |
| 71 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦 +s 𝑧𝐿 ) ) |
| 72 |
71
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) |
| 73 |
70 72
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) ) |
| 74 |
|
simplr3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) |
| 75 |
|
elun1 |
⊢ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
| 76 |
75
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
| 77 |
73 74 76
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) |
| 78 |
77
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → ( 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) ↔ 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) ) |
| 79 |
78
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) ) |
| 80 |
79
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) } = { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) } ) |
| 81 |
69 80
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) } ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) } ) ) |
| 82 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑥𝑅 +s 𝑦 ) ) |
| 83 |
82
|
oveq1d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) ) |
| 84 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) |
| 85 |
83 84
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 86 |
|
simplr1 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) |
| 87 |
|
elun2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 88 |
87
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 89 |
85 86 88
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) |
| 90 |
89
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) ↔ 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 91 |
90
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 92 |
91
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } = { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ) |
| 93 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥 +s 𝑦𝑅 ) ) |
| 94 |
93
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) ) |
| 95 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( 𝑦𝑂 +s 𝑧 ) = ( 𝑦𝑅 +s 𝑧 ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) |
| 97 |
94 96
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ↔ ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) ) |
| 98 |
|
simplr2 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) |
| 99 |
|
elun2 |
⊢ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) → 𝑦𝑅 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
| 100 |
99
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → 𝑦𝑅 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
| 101 |
97 98 100
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) |
| 102 |
101
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → ( 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) ↔ 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) ) |
| 103 |
102
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) ) |
| 104 |
103
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } = { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) |
| 105 |
92 104
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } ) = ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) ) |
| 106 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) ) |
| 107 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦 +s 𝑧𝑅 ) ) |
| 108 |
107
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) |
| 109 |
106 108
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) ) |
| 110 |
|
simplr3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) |
| 111 |
|
elun2 |
⊢ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
| 112 |
111
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
| 113 |
109 110 112
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) |
| 114 |
113
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → ( 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) ↔ 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) ) |
| 115 |
114
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) ) |
| 116 |
115
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) } = { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) } ) |
| 117 |
105 116
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) } ) = ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) } ) ) |
| 118 |
81 117
|
oveq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) } ) |s ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) } ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) } ) |s ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) } ) ) ) |
| 119 |
|
simpl1 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → 𝑥 ∈ No ) |
| 120 |
|
simpl2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → 𝑦 ∈ No ) |
| 121 |
|
simpl3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → 𝑧 ∈ No ) |
| 122 |
119 120 121
|
addsasslem1 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) } ) |s ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) } ) ) ) |
| 123 |
119 120 121
|
addsasslem2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) } ) |s ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) } ) ) ) |
| 124 |
118 122 123
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) |
| 125 |
124
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 126 |
45 125
|
syl5 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) ) |
| 127 |
4 9 13 17 22 25 28 32 37 41 126
|
no3inds |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |