Metamath Proof Explorer


Theorem addsassd

Description: Surreal addition is associative. Part of theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 22-Jan-2025)

Ref Expression
Hypotheses addsassd.1 ( 𝜑𝐴 No )
addsassd.2 ( 𝜑𝐵 No )
addsassd.3 ( 𝜑𝐶 No )
Assertion addsassd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addsassd.1 ( 𝜑𝐴 No )
2 addsassd.2 ( 𝜑𝐵 No )
3 addsassd.3 ( 𝜑𝐶 No )
4 addsass ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) )