Metamath Proof Explorer
Description: Surreal addition is associative. Part of theorem 3 of Conway p. 17.
(Contributed by Scott Fenton, 22-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
addsassd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
addsassd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
addsassd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
Assertion |
addsassd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
addsassd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsassd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsassd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
addsass |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |