Step |
Hyp |
Ref |
Expression |
1 |
|
sleadd1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ) ) |
2 |
|
sleadd1 |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) ) |
3 |
2
|
3com12 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) ) |
4 |
1 3
|
anbi12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ↔ ( ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ∧ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) ) ) |
5 |
|
sletri3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ) ) |
7 |
|
addscl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 +s 𝐶 ) ∈ No ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 +s 𝐶 ) ∈ No ) |
9 |
|
addscl |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) ∈ No ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) ∈ No ) |
11 |
|
sletri3 |
⊢ ( ( ( 𝐴 +s 𝐶 ) ∈ No ∧ ( 𝐵 +s 𝐶 ) ∈ No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ ( ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ∧ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ ( ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ∧ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) ) ) |
13 |
4 6 12
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |