Metamath Proof Explorer


Theorem addscan2

Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addscan2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sleadd1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ) )
2 sleadd1 ( ( 𝐵 No 𝐴 No 𝐶 No ) → ( 𝐵 ≤s 𝐴 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) )
3 2 3com12 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐵 ≤s 𝐴 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) )
4 1 3 anbi12d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ↔ ( ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ∧ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) ) )
5 sletri3 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ) )
6 5 3adant3 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ) )
7 addscl ( ( 𝐴 No 𝐶 No ) → ( 𝐴 +s 𝐶 ) ∈ No )
8 7 3adant2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 +s 𝐶 ) ∈ No )
9 addscl ( ( 𝐵 No 𝐶 No ) → ( 𝐵 +s 𝐶 ) ∈ No )
10 9 3adant1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐵 +s 𝐶 ) ∈ No )
11 sletri3 ( ( ( 𝐴 +s 𝐶 ) ∈ No ∧ ( 𝐵 +s 𝐶 ) ∈ No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ ( ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ∧ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) ) )
12 8 10 11 syl2anc ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ ( ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ∧ ( 𝐵 +s 𝐶 ) ≤s ( 𝐴 +s 𝐶 ) ) ) )
13 4 6 12 3bitr4rd ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ 𝐴 = 𝐵 ) )