Metamath Proof Explorer


Theorem addscld

Description: Surreal numbers are closed under addition. Theorem 6(iii) of Conway p. 18. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addscut.1 ( 𝜑𝑋 No )
addscut.2 ( 𝜑𝑌 No )
Assertion addscld ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ No )

Proof

Step Hyp Ref Expression
1 addscut.1 ( 𝜑𝑋 No )
2 addscut.2 ( 𝜑𝑌 No )
3 1 2 addscut ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) )
4 3 simp1d ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ No )