| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s 𝑦 ) = ( 𝑥𝑂 +s 𝑦 ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑦 +s 𝑥 ) = ( 𝑦 +s 𝑥𝑂 ) ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s 𝑦 ) = ( 𝑦 +s 𝑥 ) ↔ ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑥𝑂 +s 𝑦𝑂 ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑥𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ↔ ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥𝑂 +s 𝑦𝑂 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑦𝑂 +s 𝑥 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ↔ ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s 𝑦 ) = ( 𝐴 +s 𝑦 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 +s 𝑥 ) = ( 𝑦 +s 𝐴 ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 +s 𝑦 ) = ( 𝑦 +s 𝑥 ) ↔ ( 𝐴 +s 𝑦 ) = ( 𝑦 +s 𝐴 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s 𝑦 ) = ( 𝐴 +s 𝐵 ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝐴 ) = ( 𝐵 +s 𝐴 ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 +s 𝑦 ) = ( 𝑦 +s 𝐴 ) ↔ ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) ) |
| 16 |
|
simpr2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ) |
| 17 |
|
elun1 |
⊢ ( 𝑙 ∈ ( L ‘ 𝑥 ) → 𝑙 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑙 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑙 +s 𝑦 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥𝑂 = 𝑙 → ( 𝑦 +s 𝑥𝑂 ) = ( 𝑦 +s 𝑙 ) ) |
| 20 |
18 19
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑙 → ( ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ↔ ( 𝑙 +s 𝑦 ) = ( 𝑦 +s 𝑙 ) ) ) |
| 21 |
20
|
rspccva |
⊢ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ 𝑙 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → ( 𝑙 +s 𝑦 ) = ( 𝑦 +s 𝑙 ) ) |
| 22 |
16 17 21
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) ∧ 𝑙 ∈ ( L ‘ 𝑥 ) ) → ( 𝑙 +s 𝑦 ) = ( 𝑦 +s 𝑙 ) ) |
| 23 |
22
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) ∧ 𝑙 ∈ ( L ‘ 𝑥 ) ) → ( 𝑤 = ( 𝑙 +s 𝑦 ) ↔ 𝑤 = ( 𝑦 +s 𝑙 ) ) ) |
| 24 |
23
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) ) ) |
| 25 |
24
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } = { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |
| 26 |
|
simpr3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) |
| 27 |
|
elun1 |
⊢ ( 𝑙 ∈ ( L ‘ 𝑦 ) → 𝑙 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑙 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥 +s 𝑙 ) ) |
| 29 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑙 → ( 𝑦𝑂 +s 𝑥 ) = ( 𝑙 +s 𝑥 ) ) |
| 30 |
28 29
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑙 → ( ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ↔ ( 𝑥 +s 𝑙 ) = ( 𝑙 +s 𝑥 ) ) ) |
| 31 |
30
|
rspccva |
⊢ ( ( ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ∧ 𝑙 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) → ( 𝑥 +s 𝑙 ) = ( 𝑙 +s 𝑥 ) ) |
| 32 |
26 27 31
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) ∧ 𝑙 ∈ ( L ‘ 𝑦 ) ) → ( 𝑥 +s 𝑙 ) = ( 𝑙 +s 𝑥 ) ) |
| 33 |
32
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) ∧ 𝑙 ∈ ( L ‘ 𝑦 ) ) → ( 𝑧 = ( 𝑥 +s 𝑙 ) ↔ 𝑧 = ( 𝑙 +s 𝑥 ) ) ) |
| 34 |
33
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) ) ) |
| 35 |
34
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } = { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ) |
| 36 |
25 35
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) = ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ) ) |
| 37 |
|
uncom |
⊢ ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ) = ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |
| 38 |
36 37
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) = ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) ) |
| 39 |
|
elun2 |
⊢ ( 𝑟 ∈ ( R ‘ 𝑥 ) → 𝑟 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑟 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑟 +s 𝑦 ) ) |
| 41 |
|
oveq2 |
⊢ ( 𝑥𝑂 = 𝑟 → ( 𝑦 +s 𝑥𝑂 ) = ( 𝑦 +s 𝑟 ) ) |
| 42 |
40 41
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑟 → ( ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ↔ ( 𝑟 +s 𝑦 ) = ( 𝑦 +s 𝑟 ) ) ) |
| 43 |
42
|
rspccva |
⊢ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ 𝑟 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → ( 𝑟 +s 𝑦 ) = ( 𝑦 +s 𝑟 ) ) |
| 44 |
16 39 43
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) ∧ 𝑟 ∈ ( R ‘ 𝑥 ) ) → ( 𝑟 +s 𝑦 ) = ( 𝑦 +s 𝑟 ) ) |
| 45 |
44
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) ∧ 𝑟 ∈ ( R ‘ 𝑥 ) ) → ( 𝑤 = ( 𝑟 +s 𝑦 ) ↔ 𝑤 = ( 𝑦 +s 𝑟 ) ) ) |
| 46 |
45
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) ) ) |
| 47 |
46
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } = { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) |
| 48 |
|
elun2 |
⊢ ( 𝑟 ∈ ( R ‘ 𝑦 ) → 𝑟 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
| 49 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑟 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥 +s 𝑟 ) ) |
| 50 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑟 → ( 𝑦𝑂 +s 𝑥 ) = ( 𝑟 +s 𝑥 ) ) |
| 51 |
49 50
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑟 → ( ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ↔ ( 𝑥 +s 𝑟 ) = ( 𝑟 +s 𝑥 ) ) ) |
| 52 |
51
|
rspccva |
⊢ ( ( ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ∧ 𝑟 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) → ( 𝑥 +s 𝑟 ) = ( 𝑟 +s 𝑥 ) ) |
| 53 |
26 48 52
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) ∧ 𝑟 ∈ ( R ‘ 𝑦 ) ) → ( 𝑥 +s 𝑟 ) = ( 𝑟 +s 𝑥 ) ) |
| 54 |
53
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) ∧ 𝑟 ∈ ( R ‘ 𝑦 ) ) → ( 𝑧 = ( 𝑥 +s 𝑟 ) ↔ 𝑧 = ( 𝑟 +s 𝑥 ) ) ) |
| 55 |
54
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) ) ) |
| 56 |
55
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } = { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ) |
| 57 |
47 56
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) = ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ) ) |
| 58 |
|
uncom |
⊢ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ) = ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) |
| 59 |
57 58
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) = ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) |
| 60 |
38 59
|
oveq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) ) = ( ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |s ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) ) |
| 61 |
|
addsval |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑥 +s 𝑦 ) = ( ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( 𝑥 +s 𝑦 ) = ( ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) ) ) |
| 63 |
|
addsval |
⊢ ( ( 𝑦 ∈ No ∧ 𝑥 ∈ No ) → ( 𝑦 +s 𝑥 ) = ( ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |s ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) ) |
| 64 |
63
|
ancoms |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑦 +s 𝑥 ) = ( ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |s ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( 𝑦 +s 𝑥 ) = ( ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |s ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) ) |
| 66 |
60 62 65
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) ) → ( 𝑥 +s 𝑦 ) = ( 𝑦 +s 𝑥 ) ) |
| 67 |
66
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦𝑂 ) = ( 𝑦𝑂 +s 𝑥 ) ) → ( 𝑥 +s 𝑦 ) = ( 𝑦 +s 𝑥 ) ) ) |
| 68 |
3 6 9 12 15 67
|
no2inds |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) |