Metamath Proof Explorer
		
		
		
		Description:  Surreal addition commutes.  Part of Theorem 3 of Conway p. 17.
       (Contributed by Scott Fenton, 20-Aug-2024)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						addscomd.1 | 
						⊢ ( 𝜑  →  𝐴  ∈   No  )  | 
					
					
						 | 
						 | 
						addscomd.2 | 
						⊢ ( 𝜑  →  𝐵  ∈   No  )  | 
					
				
					 | 
					Assertion | 
					addscomd | 
					⊢  ( 𝜑  →  ( 𝐴  +s  𝐵 )  =  ( 𝐵  +s  𝐴 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							addscomd.1 | 
							⊢ ( 𝜑  →  𝐴  ∈   No  )  | 
						
						
							| 2 | 
							
								
							 | 
							addscomd.2 | 
							⊢ ( 𝜑  →  𝐵  ∈   No  )  | 
						
						
							| 3 | 
							
								
							 | 
							addscom | 
							⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  +s  𝐵 )  =  ( 𝐵  +s  𝐴 ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  =  ( 𝐵  +s  𝐴 ) )  |